如圖,AB=AE,∠1=∠2,∠C=∠D.
求證:△ABC≌△AED.

【答案】分析:首先根據(jù)∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.
解答:證明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
即∠BAC=∠EAD,
∵在△ABC和△AED中,
,
∴△ABC≌△AED(AAS).
點評:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,AB=AE,AC=AD,要使EC=BD,需添加一個什么條件?請你添加一個條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB=AE,BC=ED,∠B=∠E,F(xiàn)為CD的中點.說明AF⊥CD的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB=AE,AD=AC,∠BAD=∠EAC,BC,DE交于點O.求證:∠ABC=∠AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AE,BC=DE,AF⊥CD于F,∠B=∠E,求證:AF平分∠BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AE,∠1=∠2,AC=AD,求證:BC=DE.

查看答案和解析>>

同步練習(xí)冊答案