【題目】如圖,要在長方形鋼板ABCD的邊AB上找一點E,使∠AEC150°,應(yīng)怎樣確定點E的位置?為什么?

【答案】CD為始邊,在長方形的內(nèi)部,利用量角器作∠DCF30°,射線CFAB交于點E,則點E為所找的點,理由見解析

【解析】

利用量角器作∠DCF=30°,射線CFAB交于點E,則∠DCF=DCE=30°,由平行線的性質(zhì)得出∠DCE+AEC=180°,則∠AEC=150°

CD為始邊,在長方形的內(nèi)部,利用量角器作∠DCF=30°,射線CFAB交于點E,則點E為所找的點;理由如下:

如圖所示:

∵四邊形ABCD是長方形,

ABCD,

∴∠DCE+AEC=180°

∵∠DCE=∠DCF=30°,

∴∠AEC=180°﹣∠DCE=180°30°=150°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】418日,一年一度的風(fēng)箏節(jié)活動在市政廣場舉行,如圖,廣場上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測得風(fēng)箏A的仰角為67°,同一時刻小蕓在附近一座距地面30米高(BC30)的居民樓頂B處測得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD40米,牽引端距地面高度DE1.5米,根據(jù)以上條件計算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,將矩形繞點順時針旋轉(zhuǎn),點分別落在點,,處.

1)直接填空:當(dāng)時,點所經(jīng)過的路徑的長為___________;

2)若點,,在同一直線上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+4經(jīng)過A(﹣3,0)、B4,0)兩點,且與y軸交于點CD44,0).動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度向點B移動,同時動點Q從點C出發(fā),沿線段CA以某一速度向點A移動.

1)求該拋物線的解析式;

2)若經(jīng)過t秒的移動,線段PQCD垂直平分,求此時t的值;

3)在第一象限的拋物線上取一點G,使得SGCBSGCA,再在拋物線上找點E(不與點A、BC重合),使得∠GBE45°,求E點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx2x軸交于兩點A(﹣10)和B4,0),與Y軸交于點C,連接AC、BC、AB,

1)求拋物線的解析式;

2)點D是拋物線上一點,連接BD、CD,滿足,求點D的坐標(biāo);

3)點E在線段AB上(與A、B不重合),點F在線段BC上(與B、C不重合),是否存在以C、E、F為頂點的三角形與△ABC相似,若存在,請直接寫出點F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:連結(jié)菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.

(1)判斷下列命題是真命題,還是假命題?

①正方形是自相似菱形;

②有一個內(nèi)角為60°的菱形是自相似菱形.

③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED

(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,EBC中點.

①求AEDE的長;

ACBD交于點O,求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,內(nèi)切圓O和邊、分別相切于點D、EF,則以下四個結(jié)論中,錯誤的結(jié)論是( )

A.O的外心B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯誤的是( 。

A. 當(dāng)小球拋出高度達到7.5m時,小球水平距O點水平距離為3m

B. 小球距O點水平距離超過4米呈下降趨勢

C. 小球落地點距O點水平距離為7

D. 斜坡的坡度為1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在⊙O上,過點CACBDOB延長線于點A,連接CD,且∠CDB=OBD=30°,DB=cm

1)求證:AC是⊙O的切線;

2求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π

查看答案和解析>>

同步練習(xí)冊答案