【題目】如圖,要在長方形鋼板ABCD的邊AB上找一點E,使∠AEC=150°,應(yīng)怎樣確定點E的位置?為什么?
【答案】以CD為始邊,在長方形的內(nèi)部,利用量角器作∠DCF=30°,射線CF與AB交于點E,則點E為所找的點,理由見解析
【解析】
利用量角器作∠DCF=30°,射線CF與AB交于點E,則∠DCF=∠DCE=30°,由平行線的性質(zhì)得出∠DCE+∠AEC=180°,則∠AEC=150°.
以CD為始邊,在長方形的內(nèi)部,利用量角器作∠DCF=30°,射線CF與AB交于點E,則點E為所找的點;理由如下:
如圖所示:
∵四邊形ABCD是長方形,
∴AB∥CD,
∴∠DCE+∠AEC=180°,
∵∠DCE=∠DCF=30°,
∴∠AEC=180°﹣∠DCE=180°﹣30°=150°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月18日,一年一度的“風(fēng)箏節(jié)”活動在市政廣場舉行,如圖,廣場上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測得風(fēng)箏A的仰角為67°,同一時刻小蕓在附近一座距地面30米高(BC=30米)的居民樓頂B處測得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD=40米,牽引端距地面高度DE=1.5米,根據(jù)以上條件計算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,將矩形繞點順時針旋轉(zhuǎn),點分別落在點,,處.
(1)直接填空:當(dāng)時,點所經(jīng)過的路徑的長為___________;
(2)若點,,在同一直線上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4經(jīng)過A(﹣3,0)、B(4,0)兩點,且與y軸交于點C,D(4﹣4,0).動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度向點B移動,同時動點Q從點C出發(fā),沿線段CA以某一速度向點A移動.
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動,線段PQ被CD垂直平分,求此時t的值;
(3)在第一象限的拋物線上取一點G,使得S△GCB=S△GCA,再在拋物線上找點E(不與點A、B、C重合),使得∠GBE=45°,求E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于兩點A(﹣1,0)和B(4,0),與Y軸交于點C,連接AC、BC、AB,
(1)求拋物線的解析式;
(2)點D是拋物線上一點,連接BD、CD,滿足,求點D的坐標(biāo);
(3)點E在線段AB上(與A、B不重合),點F在線段BC上(與B、C不重合),是否存在以C、E、F為頂點的三角形與△ABC相似,若存在,請直接寫出點F的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:連結(jié)菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.
(1)判斷下列命題是真命題,還是假命題?
①正方形是自相似菱形;
②有一個內(nèi)角為60°的菱形是自相似菱形.
③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.
(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.
①求AE,DE的長;
②AC,BD交于點O,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,內(nèi)切圓O和邊、、分別相切于點D、E、F,則以下四個結(jié)論中,錯誤的結(jié)論是( )
A.點O是的外心B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯誤的是( 。
A. 當(dāng)小球拋出高度達到7.5m時,小球水平距O點水平距離為3m
B. 小球距O點水平距離超過4米呈下降趨勢
C. 小球落地點距O點水平距離為7米
D. 斜坡的坡度為1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com