【題目】順次連接矩形各邊中點所得四邊形為形.

【答案】菱
【解析】解:如圖,連接AC、BD, ∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點,
∴EF=GH= AC,F(xiàn)G=EH= BD(三角形的中位線等于第三邊的一半),
∵矩形ABCD的對角線AC=BD,
∴EF=GH=FG=EH,
∴四邊形EFGH是菱形.
所以答案是:菱形.

【考點精析】認(rèn)真審題,首先需要了解三角形中位線定理(連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半),還要掌握菱形的判定方法(任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,則∠GEF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用計算器進(jìn)行模擬實驗,估計6人中有兩人同一個月過生日的概率,在選定隨機(jī)數(shù)范圍后,每次實驗要產(chǎn)生_____個隨機(jī)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下條件不能判別四邊形ABCD是矩形的是(
A.AB=CD,AD=BC,∠A=90°
B.OA=OB=OC=OD
C.AB=CD,AB∥CD,AC=BD
D.AB=CD,AB∥CD,OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論不正確的是(
A.∠1=∠3
B.如果∠2=30°,則有AC∥DE
C.如果∠2=30°,則有BC∥AD
D.如果∠2=30°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與化簡
(1)求等式中x的值:4x2﹣9=0
(2)化簡求值:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘表上的指針隨時間的變化而移動,這可以看作是數(shù)學(xué)上的_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD繞點O沿逆時針方向旋轉(zhuǎn)到四邊形ABCD′,則四邊形ABCD__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運(yùn)動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運(yùn)動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運(yùn)動.設(shè)點D、E運(yùn)動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.

(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案