對于任意的兩個實數(shù)對(a,b)和(c,d),規(guī)定:
①(a,b)=(c,d),當且僅當a=c,b=d;
②運算“?”為:(a,b)?(c,d)=(ac+bd,bc-ad);
③運算“θ”為:(a,b)θ(c,d)=(a-c,b-d).
設p,q∈R,若(1,2)?(p,q)=(11,2),則(1,2)θ(p,q)( )
A.(-2,-2)
B.(3,4)
C.(2,1)
D.(-1,-2)
【答案】分析:先根據(jù)(1,2)?(p,q)=(11,2),列方程組求p、q的值,再由規(guī)定運算“θ”求(1,2)θ(p,q)的結(jié)果.
解答:解:由規(guī)定②,得
(1,2)?(p,q)=(p+2q,2p-q),
∵(1,2)?(p,q)=(11,2),
∴(p+2q,2p-q)=(11,2),
由規(guī)定①,得,解得,
由規(guī)定③,可知
(1,2)θ(p,q)
=(1,2)θ(3,4)
=(1-3,2-4)
=(-2,-2).
故選A.
點評:本題考查了有理數(shù)無理數(shù)的概念與運算.關鍵是理解規(guī)定運算,依照規(guī)定運算的要求,依次計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、對于任意的兩個實數(shù)對(a,b)和(c,d),規(guī)定:當a=c,b=d時,有(a,b)=(c,d);運算“×”為:(a,b)×(c,d)=(ac,bd);運算“+”為:(a,b)+(c,d)=(a+c,b+d).設p,q都是實數(shù),若(1,2)×(p,q)=(2,-4),則(1,2)+(p,q)=
(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、對于任意的兩個實數(shù)對(a,b)和(c,d),規(guī)定:當a=c,b=d時,有(a,b)=(c,d);運算“?”為:(a,b)?(c,d)=(ac,bd);運算“⊕”為:(a,b)⊕(c,d)=(a+c,b+d).設p、q都是實數(shù),若(1,2)?(p,q)=(2,-4),則(1,2)⊕(p,q)=
(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于任意的兩個實數(shù)對(a,b)和(c,d),規(guī)定:
①(a,b)=(c,d),當且僅當a=c,b=d;
②運算“?”為:(a,b)?(c,d)=(ac+bd,bc-ad);
③運算“θ”為:(a,b)θ(c,d)=(a-c,b-d).
設p,q∈R,若(1,2)?(p,q)=(11,2),則(1,2)θ(p,q)( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于任意的兩個實數(shù)對(a,b)和(c,d),規(guī)定:當a=c,b=d時,有(a,b)=(c,d);運算“?”為:(a,b)?(c,d)=(ac,bd);運算“⊕”為:(a,b)⊕(c,d)=(a+c,b+d).設p,q都是實數(shù),如果(1,2)?(p,q)=(2,-4),
請計算:(1,2)⊕(p,q).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(江蘇宿遷卷)數(shù)學(解析版) 題型:填空題

對于任意的兩個實數(shù)對,規(guī)定:當時,有;運算“”為:;運算“”為:.設、都是實數(shù),若,則

 

查看答案和解析>>

同步練習冊答案