如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連接OD.

(1)求證:△COD是等邊三角形;

(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;

(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?

答案:
解析:

  (1)∵ADC是由△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°而得.

  ∴CO=DO,∠OCD=60°.

  ∴∠COD=∠ODC=(180°-60°).

  ∴CO=DO=CD.

  ∴△COD為等邊三角形. 2分

  (2)當(dāng)a=150°時(shí),∠ADC=∠BOC=150°.

  而△COD為等邊三角形.∴∠ODC=60°.

  ∴∠ADO=∠ADC-∠ODC=150°-60°=90°.

  又∠AOD=360°-110°-150°-60°=40°,

  ∠AOD=360°-110°-a-60°=190°-a,

  ∴△AOD為直角三角形. 4分

  (3)∵當(dāng)∠BOC=時(shí),∠OAD=180°-∠AOD-∠ADO=50°.

  而△AOD為等腰三角形,則AD=DO或AD=AO或DO=AO.

  當(dāng)AD=DO時(shí),190°-=50°,則=140°;

  當(dāng)AD=AO時(shí),190°--60°,則=125°;

  當(dāng)AO=DO時(shí),-60=50°,則=110°.

  ∴當(dāng)=140°,125°,110°時(shí),△AOD為等腰三角形. 10分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,點(diǎn)D是等邊三角形ABC內(nèi)的一點(diǎn),將△BDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,試畫出旋轉(zhuǎn)后的三角形,并指出圖中的全等圖形以及它們的對應(yīng)頂點(diǎn)、對應(yīng)邊和對應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),BP=5cm,△PAB繞點(diǎn)B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
(1)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時(shí)卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點(diǎn),OC=1,OA=
3
,OB=
5
.求∠AOC的度數(shù).
小明去請教小穎正在解答下列題目.
題目2:如圖②,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),將△BCO繞C順時(shí)針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當(dāng)∠COB=150°時(shí),試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會(huì)了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將線段OC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到線段CD,連接OD、AD.
(1)求證:AD=BO;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時(shí)(直接寫出答案),△AOD是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案