5、已知⊙O和⊙O′的半徑分別為5cm和7cm,且⊙O與⊙O′相切,則圓心距OO′為(  )
分析:此題考慮兩種情況:兩圓外切或兩圓內(nèi)切.再進(jìn)一步根據(jù)位置關(guān)系得到數(shù)量關(guān)系.
設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
解答:解:當(dāng)兩圓外切時(shí),則圓心距等于兩圓半徑之和,即7+5=12;
當(dāng)兩圓內(nèi)切時(shí),則圓心距等于兩圓半徑之差,即7-5=2.
故選D.
點(diǎn)評(píng):注意:兩圓相切包括兩圓內(nèi)切或兩圓外切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知邊長(zhǎng)為3的正方形ABOC中,B,C兩點(diǎn)分別在x軸正半軸,y軸的負(fù)半軸上,精英家教網(wǎng)過(guò)A點(diǎn)的雙曲線y1=
kx
與直線AD:y2=ax+b的另一個(gè)交點(diǎn)D的縱坐標(biāo)為1.
(1)求雙曲線和直線AD的函數(shù)解析式;
(2)根據(jù)圖象,寫(xiě)出x為何值時(shí),y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•邵陽(yáng))如圖所示,已知拋物線y=-2x2-4x的圖象E,將其向右平移兩個(gè)單位后得到圖象F.
(1)求圖象F所表示的拋物線的解析式:
(2)設(shè)拋物線F和x軸相交于點(diǎn)O、點(diǎn)B(點(diǎn)B位于點(diǎn)O的右側(cè)),頂點(diǎn)為點(diǎn)C,點(diǎn)A位于y軸負(fù)半軸上,且到x軸的距離等于點(diǎn)C到x軸的距離的2倍,求AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y=x2+mx+1的頂點(diǎn)在x軸負(fù)半軸上.
(1)求拋物線C1的頂點(diǎn)坐標(biāo);
(2)把拋物線C1向下平移若干個(gè)單位后,得到拋物線C2,已知C2與x軸的交點(diǎn)為A(1,0)、B,求拋物線C2的函數(shù)解析式和B點(diǎn)的坐標(biāo);
(3)若P(n,y1)、Q(2,y2)是拋物線C1上的兩點(diǎn),且y1>y2.直接寫(xiě)出實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知邊長(zhǎng)為3的正方形ABOC中,B,C兩點(diǎn)分別在x軸正半軸,y軸的負(fù)半軸上,過(guò)A點(diǎn)的雙曲線數(shù)學(xué)公式與直線AD:y2=ax+b的另一個(gè)交點(diǎn)D的縱坐標(biāo)為1.
(1)求雙曲線和直線AD的函數(shù)解析式;
(2)根據(jù)圖象,寫(xiě)出x為何值時(shí),y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(云南昭通) 題型:解答題


已知拋物線上有不同的兩點(diǎn)E和F

(1)求拋物線的解析式.
(2)如圖,拋物線與x軸和y軸的正半軸分別交于點(diǎn)A和B,M為AB的中點(diǎn),∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長(zhǎng)為m(m>0),BC的長(zhǎng)為n,求n和m之間的函數(shù)關(guān)系式.
(3)當(dāng)m,n為何值時(shí),∠PMQ的邊過(guò)點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊(cè)答案