【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數(shù)y= (k>0,x>0)的圖象上,點D的坐標(biāo)為( ,2).

(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的一個頂點恰好落在函數(shù)y= (k>0,x>0)的圖象上時,求菱形ABCD平移的距離.

【答案】
(1)

解:作DE⊥BO,DF⊥x軸于點F,

∵點D的坐標(biāo)為( ,2),

∴DO=AD=3,

∴A點坐標(biāo)為:( ,5),

∴k=5


(2)

解:∵將菱形ABCD向右平移,使點D落在反比例函數(shù)y= (x>0)的圖象上D′,

∴DF=D′F′=2,

∴D′點的縱坐標(biāo)為2,設(shè)點D′(x,2)

∴2= ,解得x= ,

∴FF′=OF′﹣OF= = ,

∴菱形ABCD平移的距離為

同理,將菱形ABCD向右平移,使點B落在反比例函數(shù)y= (x>0)的圖象上,

菱形ABCD平移的距離為 ,

綜上,當(dāng)菱形ABCD平移的距離為 時,菱形的一個頂點恰好落在函數(shù)圖象上.


【解析】(1)根據(jù)菱形的性質(zhì)和D的坐標(biāo)即可求出A的坐標(biāo),代入求出即可;(2)B和D可能落在反比例函數(shù)的圖象上,根據(jù)平移求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸交于點C,與y軸交于點B,拋物線y=ax2+ x+c經(jīng)過B、C兩點,點E是直線BC上方拋物線上的一動點.

(1)求拋物線的解析式;
(2)過點E作y軸的平行線交直線BC于點M、交x軸于點F,當(dāng)SBEC= 時,請求出點E和點M的坐標(biāo);
(3)在(2)的條件下,當(dāng)E點的橫坐標(biāo)為1時,在EM上是否存在點N,使得△CMN和△CBE相似?如果存在,請直接寫出點N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒有多種類型,新型冠狀病毒也是其中的一種.冠狀病毒的直徑在60220納米之間,平均直徑為100納米左右(1納米=109米).那么100納米可用科學(xué)記數(shù)法表示為( 。

A.100×109B.100×109C.1×107D.1×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給出下列三個論斷:①∠B+∠D=180°;②AB∥CD;③BC∥DE.(1)在上述三個論斷中,以其中兩個論斷作為條件,另外一個論斷作結(jié)論,寫出一個正確的命題,并加以證明。

命題:如果____________________那么____________________

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進一批“晨光”套尺,很快銷售一空;商店又用1 500元購進第二批該款套尺,購進時單價是第一批的 倍,所購數(shù)量比第一批多100套.
(1)求第一批套尺購進時單價是多少?
(2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點M、N同時從原點出發(fā)沿數(shù)軸做勻速運動,己知動點M、N的運動速度比是1:2(速度單位:1個單位長度/秒),設(shè)運動時間為t秒.

(1)若動點M向數(shù)軸負(fù)方向運動,動點N向數(shù)軸正方向運動,當(dāng)t=2秒時,動點M運動到A點,動點N運動到B點,且AB=12(單位長度).

①在直線l上畫出A、B兩點的位置,并回答:點A運動的速度是   (單位長度/秒);點B運動的速度是   (單位長度/秒).

②若點P為數(shù)軸上一點,且PA﹣PB=OP,求的值;

(2)由(1)中A、B兩點的位置開始,若M、N同時再次開始按原速運動,且在數(shù)軸上的運動方向不限,再經(jīng)過幾秒,MN=4(單位長度)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點F,E,EM平∠FED,ABCD,H,P分別為直線AB和線段EF上的點.

(1)如圖1,HM平分∠BHP,若HPEF,求∠M的度數(shù).

(2)如圖2,EN平分∠HEFAB于點N,NQEM于點Q,當(dāng)H在直線AB上運動(不與點F重合)時,探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點CCFAB于點F,交BD于點G,過CCEBDAB的延長線于點E

1)求證:CE是⊙O的切線;

2)求證:CG=BG

3)若∠DBA=30°,CG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年某市有23 000名初中畢業(yè)生參加了升學(xué)考試,為了解23 000名考生的升學(xué)成績,從中抽取了200名考生的試卷進行統(tǒng)計分析,以下說法正確的是(

A.23 000名考生是總體B.每名考生的成績是個體

C.200名考生是總體的一個樣本D.以上說法都不正確

查看答案和解析>>

同步練習(xí)冊答案