【題目】知識鋪墊
通過小學的學習我們知道:
①正方形的四條邊都相等,四個角都是直角如在正方形中,,
.
②等腰三角形中相等的兩條邊所對的兩個角也相等。如在中,如果,那么.
解決問題
如圖1,在中,為銳角,點為射線上一點,連接,以為一邊且在的右側作正方形,解答下列問題:
(1)如果,
①如圖2,當點在線段上時(與點不重合),線段、之間的數(shù)量關系為__________,位置關系為__________.
②如圖3,當點在線段的延長線上時,①中的結論是否仍然成立,并說明理由.
拓展延伸
(2)如果,.點在線段上,當__________時,(點、不重合).
【答案】(1)①相等,垂直;②成立,理由見解析;(2)45°.
【解析】
(1)①證明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,則∠BCF=∠ACB+∠ACF=90°,所以BD與CF相等且垂直;
②①的結論仍成立,同理證明△DAB≌△FAC,可得結論:垂直且相等;
(2)當∠ACB滿足45°時,CF⊥BC;如圖4,作輔助線,證明△QAD≌△CAF,即可得出結論.
解:(1)①CF與BD數(shù)量關系是相等,位置關系是垂直,理由是:
如圖2,∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∴∠DAC+∠CAF=90°,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=90°,且∠B=∠ACB=45°,
∴∠CAF=∠BAD,
∴△BAD≌△CAF,
∴BD=CF,∠B=∠ACF=45°,
∴∠ACB+∠ACF=45°+45°=90°,
即∠BCF=90°,
∴BC⊥CF,
即BD⊥CF;
故答案為:相等,垂直;
②當點D在BC的延長線上時,①的結論仍成立,理由是:
如圖3,由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,
∠ACF=∠ABD,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=∠ABC=45°
∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;
(2)當∠ACB=45°時,CF⊥BD,理由是:
如圖4,過點A作AQ⊥AC,交BC于點Q,
∵∠BCA=45°,
∴∠AQC=45°,
∴∠AQC=∠BCA,
∴AC=AQ,
∵AD=AF,∠QAC=∠DAF=90°,
∴∠QAC-∠DAC=∠DAF-∠DAC,
∴∠QAD=∠CAF,
∴△QAD≌△CAF,
∴∠ACF=∠AQD=45°,
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
故答案為:45°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再選兩個做為補充,使ABCD變?yōu)檎叫危旅嫠姆N組合,錯誤的是( 。
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了探索代數(shù)式的最小值,
小張巧妙的運用了數(shù)學思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作,連結AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則,則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得的最小值等于 ,此時x= ;
(2)題中“小張巧妙的運用了數(shù)學思想”是指哪種主要的數(shù)學思想;
(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結合思想)
(3)請你根據上述的方法和結論,試構圖求出代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動課上,老師帶領同學們區(qū)測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE=30°,然后往塔的方向前進50米到達B處,此時測得塔頂C的仰角∠CGE=60°,已知測量器高1.5米,請你根據以上數(shù)據計算出古塔CD 的高度,(≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點間的距離.(結果精確到0.1 m)(參考數(shù)據: ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC=____.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積.
(2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1.
(3)寫出點A1,B1,C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學是這樣思考的:延長至,使,連結.利用全等將邊轉化到,在中利用三角形三邊關系即可求出中線的取值范圍.在這個過程中小聰同學證三角形全等用到的判定方法是__________;中線的取值范圍是__________.
(2)問題解決:如圖2,在中,點是的中點,點在邊上,點在邊上,若.求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. 擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件
B. 明天下雪的概率為,表示明天有半天都在下雪
C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
D. 了解一批充電寶的使用壽命,適合用普查的方式
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com