【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b圖象與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點(diǎn)C,CE⊥x軸,tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)在第四象限內(nèi)圖象上的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF,如果S△BAF=4S△DFO,求點(diǎn)D的坐標(biāo).
【答案】(1),;(2)D(,﹣4).
【解析】
(1)由條件可求得OA,由△AOB∽△CEB可求得CE,則可求得C點(diǎn)坐標(biāo),代入反比例函數(shù)解析式可求得m的值,可求得反比例函數(shù)解析式;
(2)設(shè)出D的坐標(biāo),從而可分別表示出△BAF和△DFO的面積,由條件可列出方程,從而可求得D點(diǎn)坐標(biāo).
解:(1)∵tan∠ABO=,
∴,且OB=4,
∴OA=2,
∵CE⊥x軸,即CE∥AO,
∴△AOB∽△CEB,
∴,即,解得CE=3,
∴C(﹣2,3),
∴m=﹣2×3=﹣6,
∴反比例函數(shù)解析式為y=;
∵OA=2,OB=4,
∴A(0,2),B(4,0),
代入y=kx+b得,解得,
∴一次函數(shù)的解析式為y=+2;
(2)設(shè)D(x,),
∵D在第四象限,
∴DF=x,OF=,
∴S△DFO=DFOF=,
由(1)可知OA=2,
∴AF=2+,
∴S△BAF=AFOB,
∵S△BAF=4△DFO,
∴2(2+)=4×3,解得x=,
當(dāng)x=時(shí),的值為﹣4,
∴D(,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線軸于點(diǎn)(1,0),直線軸于點(diǎn)(2,0),直線軸于點(diǎn)(3,0),…,直線軸于點(diǎn)(n,0)。函數(shù)的圖象與直線分別交于點(diǎn);函數(shù)的圖象與直線分別交于點(diǎn)。如果的面積記作,四邊形的面積記作,四邊形的面積記作,…,四邊形的面積記作,那么_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點(diǎn)D,點(diǎn)P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾的分類(lèi)處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門(mén)為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類(lèi)情況,其相關(guān)信息如下:
根據(jù)圖表解答下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共 噸;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類(lèi)垃圾占,每回收1噸塑料類(lèi)垃圾可獲得0.7噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為5 000噸,且全部分類(lèi)處理,那么每月回收的塑料類(lèi)垃圾可以獲得多少噸二級(jí)原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F對(duì)應(yīng),若以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形,則m的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段AB在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,端點(diǎn)A、B為格點(diǎn)(即網(wǎng)格線的交點(diǎn)).
(1)線段AB的長(zhǎng)度為________;
(2)在網(wǎng)格中找出一個(gè)格點(diǎn)C,使得△ABC是以AB為直角邊的等腰直角三角形,請(qǐng)畫(huà)出△ABC;
(3)在網(wǎng)格中找出一個(gè)格點(diǎn)D,使得△ABD是以AB為斜邊的等腰直角三角形,請(qǐng)畫(huà)出△ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線,E為BC的中點(diǎn),連接AE、DE.
(1)求證:DE是⊙O的切線;
(2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,若AE=3,求⊙O的半徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com