如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點E.
(1)求證:△OAD≌△EAB;
(2)求過點O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點P,其關(guān)于直線BF的對稱點在x軸上?若有,求出點P的坐標(biāo);
(4)連接OE,若點M是直線BF上的一動點,且△BMD與△OED相似,求點M的坐標(biāo).
解:(1)證明:如答圖1所示,連接ID,IO,
∵I為△BOD的外心,∴IO=ID。
又F為OD的中點,∴IF⊥OD。
∴∠DEF+∠FDE=∠AEB+∠ABE=90°。
又∠DEF=∠AEB,∴∠ EDF=∠EBA。
又∵DA=BA,且∠OAD=∠EAB=90°,
∴△OAD≌△EAB(AAS)。
(2)由(1)知IF⊥OD,又BF為中線,
∴BO=BD=AB=2!郞A=BO﹣AB=。
由(1)知△OAD≌△EAB,∴AE=OA=。
∴E(,),B(2,0)。
設(shè)過點O、B、E的拋物線解析式為y=ax2+bx,
∴,解得。
∴拋物線的解析式為:。
(3)∵直線BD與x軸關(guān)于直線BF對稱,∴拋物線與直線BD的交點,即為所求之點P。
由(2)可知,B(2,0),D(,),可得直線BD的解析式為y=﹣x+2。
∵點P既在直線y=﹣x+2上,也在拋物線上,
∴,解得:x=2或x=。
當(dāng)x=2時,y=﹣x+2=0;當(dāng)x=時,y=﹣x+2=,
∴點P的坐標(biāo)為(2,0)(與點B重合),或(,)。
(4)∵DBO=45°,BD=BO,BF⊥OD,
∴∠EBA=22.5°。
由(1)知∠ODA=22.5°,
∴∠DOA=67.5°,OA=EA。
∴∠EOA=45°,∠DOE=22.5°
∴△OED是頂角為135°的等腰三角形。
若△BMD與△OED相似,則△BMD必須是等腰三角形。
如答圖2所示,在直線BF上能使△BMD為等腰三角形的點M有4個,分別記為M1,M2,M3,M4,其中符合題意的是點M1,M3。
∵DM1=DB=2,OA=,∴M1(,)。
由(1)知B(2,0),E(,),故直線BE的解析式為y=(1﹣)x﹣2+。
∵I是△BOD的外心,它是OB的垂直平分線x=1與OD的垂直平分線BE的交點,
∴I(1,﹣1),即M3(1,﹣1).
∴符合題意的M點的坐標(biāo)為(,),(1,﹣1)。
【解析】
試題分析:(1)連接ID,IO,通過證明IF⊥OD而得到∠FED=∠EBA;又由DA=BA,且∠OAD=∠EAB=90°,即可由AAS證得△OAD≌△EAB;
(2)求出點B、E的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式。
(3)由于直線BD與x軸關(guān)于直線BF對稱,則拋物線與直線BD的交點即為所求之點P。分別求出拋物線與直線BD的解析式,聯(lián)立解方程,即可求出交點(點P)的坐標(biāo)。
(4)首先證明△OED是頂角為135°的等腰三角形,若△BMD與△OED相似,則△BMD必須是等腰三角形.如答圖2所示,在直線BF上能使△BMD為等腰三角形的點M有4個,分別記為M1,M2,M3,M4,其中符合題意的是點M1,M3。
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com