【題目】如圖,直線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度數;
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值.
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數;若不存在,說明理由.
【答案】
(1)
解:∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB= ∠AOC= ×80°=40°
(2)
解:∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值
(3)
解:在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分線,
∴∠COE= ∠AOC= ×80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,
故存在某種情況,使∠OEC=∠OBA,此時∠OEC=∠OBA=60°
【解析】(1)根據兩直線平行,同旁內角互補求出∠AOC,然后求出∠EOB= ∠AOC,計算即可得解;(2)根據兩直線平行,內錯角相等可得∠AOB=∠OBC,再根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠OFC=2∠OBC,從而得解;(3)根據三角形的內角和定理求出∠COE=∠AOB,從而得到OB、OE、OF是∠AOC的四等分線,再利用三角形的內角和定理列式計算即可得解.
科目:初中數學 來源: 題型:
【題目】伍家崗區(qū)系1億年前地殼運動隆起的陸地,大約在70000000年前形成,數據70000000用科學記數法表示為( )
A. 70000000 B. 0.7×108
C. 7×107 D. 70×106
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com