【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設了“3D”打印、數(shù)學編程、智能機器人、陶藝制作四門創(chuàng)客課程,為了解學生對這四門創(chuàng)客課程的喜愛情況,數(shù)學興趣小組對全校學生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

1

創(chuàng)客課程

頻數(shù)

頻率

A

36

0.45

B

0.25

C

16

b

D

8

合計

a

1

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

選項

創(chuàng)客課程

A

“3D”打印

B

數(shù)學編程

C

智能機器人

D

陶藝制作

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a   b   

2“D”對應扇形的圓心角為   ;

3)根據(jù)調(diào)查結果,請你估計該校2000名學生中最喜歡數(shù)學編程創(chuàng)客課程的人數(shù).

【答案】180,0.20;(236°;(3500.

【解析】

1)根據(jù)頻數(shù)與頻率的關系列式計算即可即可;

2)根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;

3)根據(jù)最喜歡數(shù)學編程創(chuàng)客課程的人數(shù)所占的百分比,即可得到人數(shù).

解:(1a36÷0.4580,

b16÷800.20,

故答案為:800.20;

2“D”對應扇形的圓心角的度數(shù)為:×360°36°,

故答案為:36°

3)估計該校2000名學生中最喜歡數(shù)學編程創(chuàng)客課程的人數(shù)為:2000×0.25500(人).

故答案為:(180,0.20;(236°;(3500.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一次安全知識測驗中,學生得分均為整數(shù),滿分10分,成績達到9分為優(yōu)秀,這次測驗中甲、乙兩組學生人數(shù)相同,成績?nèi)缦聝蓚統(tǒng)計圖:

1)在乙組學生成績統(tǒng)計圖中,8分所在的扇形的圓心角為   度;

2)請補充完整下面的成績統(tǒng)計分析表:

平均分

方差

眾數(shù)

中位數(shù)

優(yōu)秀率

甲組

7

1.8

7

7

20%

乙組

10%

3)甲組學生說他們的優(yōu)秀率高于乙組,所以他們的成績好于乙組,但乙組學生不同意甲組學生的說法,認為他們組的成績要好于甲組,請你給出兩條支持乙組學生觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平分,,,

1】求的度數(shù)

2】如圖,若把變成FDA的延長線上,,其它條件不變,求的度數(shù);

3】如圖,若把變成平分,其它條件不變,的大小是否變化,并請說明理由.(此題9分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形依次進行下去,則第2014個內(nèi)接正方形的邊長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCADE是有公共頂點的三角形,∠BAC=∠DAE90°,點P為射線BD,CE的交點.

(1) ①如圖1,∠ADE=∠ABC45°,求證:∠ABD=∠ACE

②如圖2,∠ADE=∠ABC30°,①中的結論是否成立?請說明理由.

(2)(1) ①的條件下,AB6AD4,若把ADE繞點A旋轉(zhuǎn),當∠EAC90°時,畫圖并求PB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax-2x+c(a≠0)x軸,y軸分別交于點A,B,C三點,已知點(-2,0)C(0,-8),點D是拋物線的頂點.

(1)求拋物線的解析式及頂點D的坐標;

(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AECD,連接BECD于點F,過點E作直線EPCD的延長線交于點P,使∠PED=C.

(1)求證:PE是⊙O的切線;

(2)求證:ED平分∠BEP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

同步練習冊答案