分析 (1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,繼而求得AB的長;
(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.
解答 解:(1)由題意得,
在Rt△ADC中,AD=$\frac{CD}{tan30°}$=$\frac{24}{\frac{\sqrt{3}}{3}}$=24$\sqrt{3}$(米),
在Rt△BDC中,BD=$\frac{CD}{tan60°}$=$\frac{24}{\sqrt{3}}$=8$\sqrt{3}$,
則AB=AD-BD=16$\sqrt{3}$;
(2)不超速.
理由:∵汽車從A到B用時2秒,
∴速度為24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/時),
∴該車速度為43.56千米/小時,
∵小于45千米/小時,
∴此校車在AB路段不超速.
點評 此題考查了解直角三角形的應用問題.此題難度適中,解題的關鍵是把實際問題轉化為數(shù)學問題求解,注意數(shù)形結合思想的應用.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{3}$-2$\sqrt{3}$=2 | B. | 方程3x2+27=0的解是x=±3 | ||
C. | 等弧所對的圓周角相等 | D. | 等邊三角形是中心對稱圖形 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com