【題目】某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進行了抽樣調(diào)查,過程如下,請補充完整.
收集數(shù)據(jù)
從八、九兩個年級各隨機抽取名學(xué)生,進行了體質(zhì)健康測試,測試成績(百分制)如下:
八年級 | ||||||||||
九年級 | ||||||||||
整理、描述數(shù)據(jù)
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
八年級 | 0 | 0 | 1 | 11 | 1 | |
九年級 | 1 | 0 | 0 | 7 |
(說明:成績分及以上為體質(zhì)健康優(yōu)秀,~分為體質(zhì)健康良好,~分為體質(zhì)健康合格,分以下為體質(zhì)健康不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
八年級 | 33.6 | |||
九年級 | 52.1 |
請將以上兩個表格補充完整;
得出結(jié)論
(1)估計九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為__________;
(2)可以推斷出_______年級學(xué)生的體質(zhì)健康情況更好一些,理由為_________________.(至少從兩個不同的角度說明推斷的合理性).
【答案】(1)108;(2)答案不唯一,理由需支撐推斷結(jié)即可
【解析】(1)對原始數(shù)據(jù)進行整理可得;(2)用樣本情況估計總體情況;從平均數(shù)和方差分析整體情況.
分析各年級數(shù)據(jù),可知:八班級有7人,九年級有10人;九年級有2人;九年級81分出現(xiàn)次數(shù)4,最多,所以眾數(shù)是81;(1)估計九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為:人;(2)可以推斷出八年級學(xué)生的體質(zhì)健康情況更好一些,理由為:九年級平均分上比八年級少,同時八班級方差較小,說明比較穩(wěn)定于良好水平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線l1經(jīng)過點(0,4),l2經(jīng)過(3,2),且l1與l2關(guān)于x軸對稱,則l1與l2的交點坐標為
A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,解答后面的問題:“十字相乘法”能將二次三項式分解因式,對于形如的關(guān)于,的二次三項式來說,方法的關(guān)鍵是將項系數(shù)分解成兩個因數(shù),的積,即,將項系數(shù)分解成兩個因式,的積,即,并使正好等于項的系數(shù),那么可以直接寫成結(jié)果:
例:分解因式:
解:如圖1,其中,,而
所以
而對于形如的關(guān)于,的二元二次式也可以用十字相乘法來分解.如圖2.將分解成乘積作為一列,分解成乘積作為第二列,分解成乘積作為第三列,如果,,即第1、2列,第2、3列和第1、3列都滿足十字相乘規(guī)則,則原式
例:分解因式
解:如圖3,其中,,
而,,
所以
請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)分解因式:① .
② .
(2)若關(guān)于,的二元二次式可以分解成兩個一次因式的積,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示,下列敘述正確的是( )
A. 甲乙兩地相距1200千米
B. 快車的速度是80千米∕小時
C. 慢車的速度是60千米∕小時
D. 快車到達甲地時,慢車距離乙地100千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點E,交AC于點F.若D為BC邊的中點,M為線段EF上一個動點,則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,弦 于點,過點的切線交的延長線于點,連接DF.
(1)求證:DF是⊙的切線;
(2)連接,若=30°,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省菏澤市)如圖,△ACB和△DCE均為等腰三角形,點A,D,E在同一直線上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折紙的思考.
(操作體驗)
用一張矩形紙片折等邊三角形.
第一步,對折矩形紙片ABCD(AB>BC)(圖①),使AB與DC重合,得到折痕EF,把紙片展平(圖②).
第二步,如圖③,再一次折疊紙片,使點C落在EF上的P處,并使折痕經(jīng)過點B,得到折痕BG,折出PB,PC,得到△PBC.
(1)說明△PBC是等邊三角形.
(數(shù)學(xué)思考)
(2)如圖④,小明畫出了圖③的矩形ABCD和等邊三角形PBC,他發(fā)現(xiàn),在矩形ABCD中把△PBC經(jīng)過圖形變化,可以得到圖⑤中的更大的等邊三角形,請描述圖形變化的過程.
(3)已知矩形一邊長為3cm,另一邊長為a cm,對于每一個確定的a的值,在矩形中都能畫出最大的等邊三角形,請畫出不同情形的示意圖,并寫出對應(yīng)的a的取值范圍.
(問題解決)
(4)用一張正方形鐵片剪一個直角邊長分別為4cm和1cm的直角三角形鐵片,所需正方形鐵片的邊長的最小值為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com