在△ABC中.
(1)若∠A=60°,AB、AC邊上的高CE、BD交于點O.求∠BOC的度數(shù).(如圖)
(2)若∠A為鈍角,AB、AC邊上的高CE、BD所在直線交于點O,畫出圖形,并用量角器量一量∠BAC+∠BOC=
180
180
°,再用你已學(xué)過的數(shù)學(xué)知識加以說明.
(3)由(1)(2)可以得到,無論∠A為銳角還是鈍角,總有∠BAC+∠BOC=
180
180
°.
分析:(1)由垂直的定義得到∠ADB=∠BEC=90°,再根據(jù)三角形內(nèi)角和定理得∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數(shù).
(2)首先根據(jù)題意畫出圖形,再根據(jù)三角形內(nèi)角和定證明出∠O=∠BAD,進而可得∠BAC+∠BOC=180°;
(3)根據(jù)(1)(2)可直接得到結(jié)論.
解答:解:(1)∵BD、CE分別是邊AC,AB上的高,
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°; 

(2)如圖所示:
∠BAC+∠BOC=180°;
理由如下:∵BD、CE分別是邊AC,AB上的高,
∴∠ADB=∠BEC=90°,
∵∠ABD=180°-∠ADB-∠BAD=180°-90°-∠BAD=90°-∠BAD,
∠O=180°-∠BEO-∠DBA=90°-∠DBA=90°-(90°-∠BAD)=∠BAD,
∵∠BAC=180°-∠DAB,
∴∠BAC=180°-∠O,
∴∠BAC+∠O=180°;

(3)由(1)(2)可得∠BAC+∠BOC=180°.
點評:此題主要考查了三角形內(nèi)角和定理,關(guān)鍵是掌握三角形內(nèi)角和為180°,根據(jù)圖形掌握角之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案