(1)如圖①,在△ABC中,P是△ABC內(nèi)任意一點(diǎn),∠BPC與∠A有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)如圖②,△ABC兩個(gè)外角∠CBD、∠BCE的角平分線相交于點(diǎn)O,∠A=40°,求∠BOC的度數(shù);
②已知∠A=n°,求∠BOC的度數(shù).
精英家教網(wǎng)
分析:(1)連接AP并延長到M,根據(jù)三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角可分別判斷出∠BPM>∠BAM,∠CPM>∠CAM,從而得到∠BPC與∠A的大小關(guān)系;
(2)利用角平分線的性質(zhì)和三角形內(nèi)角和是180度以及外角的性質(zhì)求算即可;
(3)同(2)的求算方法相似,直接把∠A=n°代入即可表示.
解答:精英家教網(wǎng)證明:(1)∠BPC>∠BAC.
連接AP并延長到M.
∵在△ABP中,∠BPM>∠BAM,
在△ACP中,∠CPM>∠CAM,
∴∠BPM+∠CPM>∠BAM+∠CAM,
∴∠BPC>∠BAC;

(2)解:①∵∠A=40°,
∴∠ABC+∠ACB=140°,
∴∠OBC+∠OCB=
1
2
(∠DBC+∠ECB)=
1
2
(360°-140°)=110°,
∴∠BOC=180°-110°=70°;

②由①可知∠BOC=180°-(∠OBC+∠OCB)=180°-
1
2
(∠DBC+∠ECB)=180°-
1
2
[(360°-(180°-∠A)]
即∠BOC=(90-
1
2
n
)°
點(diǎn)評(píng):本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,要在一個(gè)圓形工件通過畫直徑來確定圓心,下列四種工具和確定方法不能找到圓心的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8)DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求AC的長;
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn),且0<OG<4,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②線段EF長有可能等于3嗎?若能,請(qǐng)求出相應(yīng)的x的值,若不能請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在一條筆直地公路上有A、B、C三地,B、C兩地相距150km,甲、乙兩輛汽車分別從B、C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2與行駛時(shí)間x(h)的函數(shù)圖象如圖2所示.(乙:折線E-M-P)

(1)請(qǐng)?jiān)趫D1中標(biāo)出A地的大致位置;
(2)圖2中,點(diǎn)M的坐標(biāo)是
(1.2,0)
(1.2,0)
,該點(diǎn)的實(shí)際意義是
點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地
點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地
;
(3)求甲車到A地的距離y1與行駛時(shí)間x(h)的函數(shù)關(guān)系式,直接寫出乙車到A地的距離y2與行駛時(shí)間x(h)的函數(shù)關(guān)系式,并在圖2中補(bǔ)全甲車的函數(shù)圖象;
(4)A地設(shè)有指揮中心,指揮中心與兩車配有對(duì)講機(jī),兩部對(duì)講機(jī)在15km之內(nèi)(含15km)時(shí)能夠互相通話,直接寫出兩車可以同時(shí)與指揮中心用對(duì)講機(jī)通話的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠ACB=2∠B,∠BAC的平分線AO交BC于點(diǎn)D,點(diǎn)H為AO上一動(dòng)點(diǎn),過點(diǎn)H作直線l⊥AO于H,分別交直線AB、AC、BC于點(diǎn)N、E、M.
(1)當(dāng)直線l經(jīng)過點(diǎn)C時(shí)(如圖2),證明:BN=CD;
(2)當(dāng)M是BC中點(diǎn)時(shí),寫出CE和CD之間的等量關(guān)系,并加以證明;
(3)請(qǐng)直接寫出BN、CE、CD之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在一個(gè)7×7的正方形ABCD網(wǎng)格中,實(shí)線將它分割成5塊,再把這5塊拼成如精英家教網(wǎng)圖2,中間會(huì)出現(xiàn)一個(gè)小孔,如果正方形ABCD的邊長為a,試計(jì)算圖2中小孔的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案