如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)刻畫,

斜坡可以用一次函數(shù)刻畫.

(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);

(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

答案:略
解析:

解:(1)因?yàn)?/FONT>,所以小球到達(dá)的最高點(diǎn)的坐標(biāo)為(4,8);

(2)根據(jù)題意,得.解得07.當(dāng)x0時(shí),y0;當(dāng)x7時(shí),y.所以拋物線與直線的交點(diǎn)坐標(biāo)為(00),(7).所以A點(diǎn)的坐標(biāo)為(7,)


提示:

點(diǎn)撥:(1)小球到達(dá)的最高點(diǎn)即拋物線的頂點(diǎn);(2)小球的落點(diǎn)即拋線與直線的交點(diǎn),因此只需列方程求出交點(diǎn)坐標(biāo)即可.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可用二次函數(shù)y=4x-
1
4
x2的圖象表示,斜坡可以用一精英家教網(wǎng)次函數(shù)y=
1
2
x的圖象表示.
(1)求小球到達(dá)最高點(diǎn)的坐標(biāo);
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫,斜坡可以用一次函數(shù)y=
1
2
x
刻畫.
(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可用二次函數(shù)y=4x-數(shù)學(xué)公式x2的圖象表示,斜坡可以用一次函數(shù)y=數(shù)學(xué)公式x的圖象表示.
(1)求小球到達(dá)最高點(diǎn)的坐標(biāo);
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)數(shù)學(xué)公式刻畫,斜坡可以用一次函數(shù)數(shù)學(xué)公式刻畫.
(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年貴州省貴陽市烏當(dāng)區(qū)第二中學(xué)中考題型試卷(解析版) 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可用二次函數(shù)y=4x-x2的圖象表示,斜坡可以用一次函數(shù)y=x的圖象表示.
(1)求小球到達(dá)最高點(diǎn)的坐標(biāo);
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).______.

查看答案和解析>>

同步練習(xí)冊(cè)答案