4.為加速南充森林建設(shè),市政府決定對(duì)樹苗育苗基地實(shí)行政府補(bǔ)貼,規(guī)定每年培植一畝樹苗一次性補(bǔ)貼若干元,隨著補(bǔ)貼數(shù)字的不斷增大,某地苗圃每年育苗規(guī)模也不斷增加,但每年每畝苗圃的收益會(huì)相應(yīng)下降,經(jīng)調(diào)查每年培植畝數(shù)y(畝)與政府每畝補(bǔ)貼數(shù)額x(元)之間有如下關(guān)系(政府補(bǔ)貼為100元的整數(shù)倍,且每畝補(bǔ)貼不超過(guò)1000元):
x(元)0100200300400
y(畝)6001000140018002200
而每年每畝的收益p(元)與政府每畝補(bǔ)貼數(shù)額x(元)之間滿足一次函數(shù)關(guān)系p=-5x+9000
(1)請(qǐng)觀察題中的表格,用學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出育苗畝數(shù)y(畝)與政府每畝補(bǔ)貼數(shù)額x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)2012年政府每畝補(bǔ)貼數(shù)額x(元)是多少元時(shí),該地區(qū)苗圃收益w(元)最大,最大收益是多少元?
(3)在2012年苗圃取得最大收益的育苗情況下,該地區(qū)培植面積剛好達(dá)到最大化,要想增收,只能提高每畝收益.經(jīng)市場(chǎng)調(diào)查,培育銀杏樹苗暢銷,每畝的經(jīng)濟(jì)效益相應(yīng)會(huì)更好.2013年該地區(qū)用去年育苗面積的(30-a)%的土地培育銀杏樹苗,其余面積繼續(xù)培植一般類樹苗,預(yù)計(jì)今年培育銀杏類樹苗每畝收益在去年培植一般類樹苗每畝收益的基礎(chǔ)上增加了(100+3a)%,由于培育銀杏類樹苗每畝多支出1000元,2013年該地區(qū)因培育銀杏類樹苗預(yù)計(jì)比去年增收399萬(wàn)元.請(qǐng)參考以下數(shù)據(jù),通過(guò)計(jì)算,估算出a的整數(shù)值.(參考數(shù)據(jù):$\sqrt{35}$=5.916,$\sqrt{37}$=6.082,$\sqrt{39}$=6.244)

分析 (1)首先猜想:y與x是一次函數(shù)關(guān)系.設(shè)y=kx+b,進(jìn)而求出解析式,進(jìn)而驗(yàn)證即可;
(2)利用w=yp=(4x+600)(-5x+9000),進(jìn)而求出函數(shù)最值;
(3)根據(jù)題意結(jié)合變化后的土地面積與樹苗每畝收益,利用2013年該地區(qū)因培育銀杏類樹苗預(yù)計(jì)比去年增收399萬(wàn)元,進(jìn)而得出等式求出答案.

解答 解:(1)猜想:y與x是一次函數(shù)關(guān)系.設(shè)y=kx+b(k≠0)
則$\left\{\begin{array}{l}{600=0+b}\\{1000=100k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=4}\\{b=600}\end{array}\right.$,
故y=4x+600,
驗(yàn)證:當(dāng)x=200時(shí),y=4×200+600=1400,
結(jié)論:猜想成立,即y=4x+600;

(2)w=yp=(4x+600)(-5x+9000)
由(4x+600)(-5x+9000)=0,
解得:x1=-150,x2=1800,
故對(duì)稱軸:x=$\frac{-150+1800}{2}$=825,
∵開口向下,對(duì)稱軸是x=825,而x是100的倍數(shù),
∴當(dāng)x=800時(shí),w最大值=(4×800+600)(-5×800+9000)=19000000,
∴當(dāng)政府每畝補(bǔ)貼800元時(shí),該地苗圃收益最大,最大值為19000000元.

(3)當(dāng)x=800時(shí),y=4x+600=4×800+600=3800(畝),
P=-5x+9000=-5×800+9000=5000(元),
由題意得:3800(30-a)%×[5000(1+3a%)-1000]=3990000,
整理得:3a2-10a-300=0,
△=(-10)2-4×3×(-300)=3700,
∴a=$\frac{10±\sqrt{3700}}{2×3}$,
∴a≈11.8=12,a2=$\frac{10-10\sqrt{37}}{6}$(舍去),
答:a的值約為12.

點(diǎn)評(píng) 此題主要考查了二次函數(shù)的應(yīng)用以及待定系數(shù)法求一次函數(shù)解析式,正確表示出變化后的土地面積與樹苗每畝收益是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.化簡(jiǎn):(2a3-abc)-2(a3-b3+abc)+(abc-2b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知一個(gè)三角形紙片ABC,BC=10,BC邊上的高為8,M為AB邊上一動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A、B不重合),過(guò)點(diǎn)M作MN∥BC,交AC于點(diǎn),NQ⊥BC,MP⊥BC,垂足分別為Q、P,設(shè)MN=x,矩形MNQP的面積為y.
(1)請(qǐng)用x表示MP;
(2)填空:當(dāng)x=$\frac{40}{9}$時(shí),四邊形MNQP是正方形;
(3)求y關(guān)于x的函數(shù)關(guān)系式,并求函數(shù)y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,O是半徑為R的正六邊形的中心.
(1)求O點(diǎn)到正六邊形各邊距離之和.
(2)若P點(diǎn)是正六邊形內(nèi)異于O點(diǎn)的任意一點(diǎn),P點(diǎn)到正六邊形各邊距離之和與O點(diǎn)到正六邊形各邊距離之和有什么關(guān)系?請(qǐng)說(shuō)明理由.
(3)類比上述探索過(guò)程,直接填寫結(jié)論:
邊心距為d的正三邊形內(nèi)任意一點(diǎn)P到各邊距離之和等于3d.(用含d的代數(shù)式表示)
邊心距為d的正八邊形內(nèi)任意一點(diǎn)P到各邊距離之和等于8d.(用含d的代數(shù)式表示)
邊心距為d的正n邊形內(nèi)任意一點(diǎn)P到各邊距離之和等于nd.(用含d、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)樹形圖的生長(zhǎng)過(guò)程如圖所示:一個(gè)實(shí)心圓點(diǎn)到了下一行生成一個(gè)空心圓點(diǎn),一個(gè)空心圓到了下以行生成一個(gè)實(shí)心圓點(diǎn)和一個(gè)空心圓點(diǎn).在某一行中,記空心圓點(diǎn)的數(shù)目為m,實(shí)心圓點(diǎn)的數(shù)目為n,則下列計(jì)數(shù)不對(duì)的是( 。
A.m=5,n=3B.m=13,n=8C.m=22,n=13D.m=55,n=34

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知矩形ABCD的邊長(zhǎng)AB=2,BC=3,點(diǎn)P是AD上一動(dòng)點(diǎn)(點(diǎn)P異于A、D兩點(diǎn)),Q是BC上任意一點(diǎn),連結(jié)AQ、DQ,過(guò)P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)填空:△APE∽△ADQ,△DPF∽△DAQ.
(2)設(shè)AP的長(zhǎng)為x,△APE的面積為y1,△DPF的面積為y2,分別求出y2和y1關(guān)于x的函數(shù)關(guān)系式;
(3)在邊AD上是否存在這樣的點(diǎn)P,使△PEF的面積為$\frac{3}{4}$?若存在求出x的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A(2x+1,x-2)關(guān)于x軸對(duì)稱點(diǎn)A′在第二象限,則x的取值范圍( 。
A.x<-$\frac{1}{2}$B.x<2C.x>-$\frac{1}{2}$D.x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.用科學(xué)記數(shù)法表示-0.00059為(  )
A.-59×10-5B.-0.59×10-4C.-5.9×10-4D.-590×10-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法錯(cuò)誤的是( 。
A.兩點(diǎn)之間線段最短B.兩點(diǎn)確定一條直線
C.作射線OB=3厘米D.延長(zhǎng)線段AB到點(diǎn)C,使得BC=AB

查看答案和解析>>

同步練習(xí)冊(cè)答案