在△ABC中,∠BAC=90°,AB=AC=2數(shù)學公式,點D是直線BC上一點,BD=1,將射線AD繞點A逆時針旋轉(zhuǎn)45°得到射線AE,交直線BC于點E,則DE=________.


分析:先根據(jù)直角三角形的性質(zhì)得到BC=AB=4,∠ABC=∠ACB=45°,AH=BH=BC=2,然后討論:當點D在線段BC上,則DH=BH-BD=2-1=1,DC=BC-BD=4-1=3,利用勾股定理可計算出AD=,易得△DAE∽△DCA,則DA:DC=DE:DA,即:3=DE:,得到DE=;當點D在線段CB的延長線上,同樣的方法可計算出DE=
解答:過A作AH⊥BC與H,
∵∠BAC=90°,AB=AC=2,
∴BC=AB=4,∠ABC=∠ACB=45°,
∴AH=BH=BC=2,
當點D在線段BC上,如圖.
∵BD=1,
∴DH=BH-BD=2-1=1,DC=BC-BD=4-1=3,
在Rt△AHD中,AD==
∵射線AD繞點A逆時針旋轉(zhuǎn)45°得到射線AE,
∴∠DAE=45°,
而∠ADE=∠CDA,
∴△DAE∽△DCA,
∴DA:DC=DE:DA,即:3=DE:,
∴DE=;
當點D在線段CB的延長線上,如圖,
∵DB=1,
∴DH=BH+BD=2+1=3,DC=BC+BD=4+1=5,
在Rt△AHD中,AD==
∵射線AD繞點A逆時針旋轉(zhuǎn)45°得到射線AE,
∴∠DAE=45°,
而∠ADE=∠CDA,
∴△DAE∽△DCA,
∴DA:DC=DE:DA,即:5=DE:,
∴DE=
故答案為
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;對應點到旋轉(zhuǎn)中心的距離相等.也考查了勾股定理、等腰直角三角形的性質(zhì)以及相似三角形的判定與性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動精英家教網(wǎng);同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設(shè)運動時間為x.
(1)當x為何值時,PQ∥BC;
(2)當
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,請補全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點P不與點B,M重合,線段CQ的延長線于射線BM交于點D,猜想∠CDB的大小(用含α的代數(shù)式表示),并加以證明;
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B,M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以4cm/s的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設(shè)運動時間為x秒.
(1)當x為何值時,BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點B為旋轉(zhuǎn)中心,將△BEC按逆時針旋轉(zhuǎn)∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以每秒4cm,的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設(shè)運動時間為x秒.
(1)當x為何值時,BP=CQ
(2)當x為何值時,PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案