【題目】在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
【答案】(1)證明見試題解析;(2)證明見試題解析;(3).
【解析】
試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,即可得到△AEG≌△AEF;
(2)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則有EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,再證明∠GME=90°,MG=NF,由勾股定理得到,等量代換即可得到;
(3)延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,得到EF=HE,DF=GH,BE=BM,由(2)知HM⊥ME,得到,,,從而得到結(jié)論.
試題解析:(1)∵△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE與△AFE中,∵AG=AF,∠GAE=∠FAE=45°,AE=AE,∴△AGE≌△AFE(SAS);
(2)設(shè)正方形ABCD的邊長為a.將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG,由(1)知△AEG≌△AEF,∴EG=EF,∵∠CEF=45°,∴△BME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴,∵EG=EF,MG=BM=DF=NF,∴;
(3).證明如下:
如圖3所示,延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,∴EF=HE,DF=GH,BE=BM,由(2)知HM⊥ME,∴,,,∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)商欲將一批水果由A地運往B地,汽車貨運公司和鐵路貨運公司均開辦此項運輸業(yè)務(wù),設(shè)運輸過程中的損耗均為200元每小時,兩貨運公司的收費項:目及收費標準如下表所示:
運輸工具 | 途中平均速度 | 運費 | 裝卸費用 |
汽車 | 80 | 20 | 900 |
火車 | 100 | 15 | 2000 |
(1)設(shè)該兩地間的距離為x千米,若汽車貨運公司和鐵路貨運公司的總費用分別為y1(元)和y2(元),則y1=元,y2=元;(用含x的代數(shù)式表示y1和y2)
(2)如果汽車的總費用比火車的總費用多l(xiāng)l00元,求A,B兩地的距離為多少千米?
(3)若兩地間距離為200千米,且火車、汽車在路上耽誤的時間分別為2小時和3.1小時,若你是經(jīng)理,選擇哪種運輸方式更合算些?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知互為補角的兩個角的差為35°,則較大的角是( )
A. 107.5° B. 108.5° C. 97.5° D. 72.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(3-k)x-2k2+18
(1)k為何值時,函數(shù)為一次函數(shù);
(2)k為何值時,它的圖像經(jīng)過原點。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,老師要求同學(xué)們判斷一個四邊形的門框是否為矩形,下面是某合作學(xué)習(xí)小組的四位同學(xué)擬定的方案,其中正確的是( )
A. 測量對角線是否相互平分 B. 測量兩組對邊是否分別相等
C. 測量一組對角線是否垂直 D. 測量其內(nèi)角是否有三個直角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于體育選考項目統(tǒng)計圖
項目 | 頻數(shù) | 頻率 |
A | 80 | b |
B | c | 0.3 |
C | 20 | 0.1 |
D | 40 | 0.2 |
合計 | a | 1 |
(1)求出表中a,b,c的值,并將條形統(tǒng)計圖補充完整. 表中a= , b= , c= .
(2)如果有3萬人參加體育選考,會有多少人選擇籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com