【答案】
分析:由于反比例函數(shù)的圖象是雙曲線,點(diǎn)A可能在第一象限,也可能在第三象限,又因?yàn)樾边匓C在x軸上,所以可能點(diǎn)B在點(diǎn)C的右邊,也可能點(diǎn)B在點(diǎn)C的左邊,故一共分四種情況.針對(duì)每一種情況,都可以運(yùn)用三角函數(shù)的定義求出點(diǎn)C的坐標(biāo).
解答:解:分四種情況.
①當(dāng)點(diǎn)A在第一象限時(shí),如右圖,
過點(diǎn)A作AD⊥x軸于D.
∵在Rt△ABD中,∠ADB=90°,∠B=60°,AB=1,
∴BD=
,AD=
,
∵點(diǎn)A在反比例函數(shù)y=
上,
∴當(dāng)y=
時(shí),x=2,∴A(2,
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
,
∴CD=
,
∴OC=OD-CD=2-
=
,
∴點(diǎn)C的坐標(biāo)為(
,0);
②當(dāng)點(diǎn)A在第一象限時(shí),如右圖,
過點(diǎn)A作AD⊥x軸于D.
∵在Rt△ABD中,∠ADB=90°,∠B=60°,AB=1,
∴BD=
,AD=
,
∵點(diǎn)A在反比例函數(shù)y=
上,
∴當(dāng)y=
時(shí),x=2,∴A(2,
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
,
∴CD=
,
∴OC=OD+CD=2+
=
,
∴點(diǎn)C的坐標(biāo)為(
,0);
③當(dāng)點(diǎn)A在第三象限時(shí),如右圖,
過點(diǎn)A作AD⊥x軸于D.
∵在Rt△ABD中,∠ADB=90°,∠B=60°,AB=1,
∴BD=
,AD=
,
∵點(diǎn)A在反比例函數(shù)y=
上,
∴當(dāng)y=-
時(shí),x=-2,∴A(-2,-
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
,
∴CD=
,
∴OC=OD-CD=2-
=
,
∴點(diǎn)C的坐標(biāo)為(-
,0);
④當(dāng)點(diǎn)A在第三象限時(shí),如右圖,
過點(diǎn)A作AD⊥x軸于D.
∵在Rt△ABD中,∠ADB=90°,∠B=60°,AB=1,
∴BD=
,AD=
,
∵點(diǎn)A在反比例函數(shù)y=
上,
∴當(dāng)y=-
時(shí),x=-2,∴A(-2,-
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
,
∴CD=
,
∴OC=OD+CD=2+
=
,
∴點(diǎn)C的坐標(biāo)為(-
,0).
綜上,可知點(diǎn)C的坐標(biāo)為
.
點(diǎn)評(píng):分析出點(diǎn)C的位置有四種情況是解決本題的關(guān)鍵.