【題目】如圖,在四邊形ABCD中,∠BCD=100°,∠B=60o,連接AC,BC>AC>AB,且△ABC≌△ADC,CE、CF分別是∠ACB與∠ACD的平分線,分別交AB、AD于E、F兩點(diǎn).
(1)分別求∠BAD和∠AEC的度數(shù).
(2)請(qǐng)寫出圖中所有相等的線段.
【答案】(1)∠BAD=140°,∠AEC=85°;(2)AB=AD,BC=CD,CE=CF,AE=AF,BE=DF.
【解析】
(1)根據(jù)全等三角形的性質(zhì)得出∠BAC=∠DAC,∠ACB=∠ACD,求出∠ACB=∠ACD=∠BCD=50°,再根據(jù)三角形內(nèi)角和定理求出∠BAC,然后根據(jù)角平分線的定義求出∠ACE的度數(shù),即可求出∠AEC;
(2)根據(jù)全等三角形的性質(zhì)得出即可.
解:(1)∵△ABC≌△ADC,
∴∠BAC=∠DAC,∠ACB=∠ACD,
又∵∠BCD=100°,
∴∠ACB=∠ACD=∠BCD=50°,
又∵∠B=60o,
∴∠BAC=180°﹣60o﹣50o=70o,
∴∠BAD=140°,
又∵CE是∠ACB的角平分線,
∴∠ACE=∠ACB=25°,
∴∠AEC=180°﹣25°﹣70°=85°;
(2)∵CE、CF分別是∠ACB與∠ACD的平分線,∠ACB=∠ACD,∴∠ACE=∠ACF,
又∵∠BAC=∠DAC,AC=AC,∴△ACE≌△ACF(ASA),∴AE=AF,CE=CF,
所以相等的線段有:AB=AD,BC=DC,CE=CF,AE=AF,BE=DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)最小方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,P1,P2,P3,…均在格點(diǎn)上,其順序按圖中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根據(jù)這個(gè)規(guī)律,點(diǎn)P2 019的坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足+|b-6|=0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O-C-B-A-O的線路移動(dòng).
(1)a=______________,b=_____________,點(diǎn)B的坐標(biāo)為_______________;
(2)當(dāng)點(diǎn)P移動(dòng)4秒時(shí),請(qǐng)指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);
(3)在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,﹣2),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求線段PE的長(zhǎng)(用含x 的代數(shù)式表示);
(3)點(diǎn)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),若以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時(shí)出發(fā)相向而行,其中甲到達(dá)B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.
(1)求甲車離A地的距離y甲(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若它們出發(fā)第5小時(shí)時(shí),離各自出發(fā)地的距離相等,求乙車離A地的距離y乙(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們?cè)谛旭偟倪^程中相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地長(zhǎng)途汽車站規(guī)定前來乘車的旅客可以免費(fèi)隨身攜帶一定質(zhì)量的行李,如果行李質(zhì)量超過規(guī)定,則應(yīng)交納行李費(fèi),行李費(fèi)用y(元)與行李質(zhì)量x(千克)之間的關(guān)系可以用如圖所示的圖象表示,請(qǐng)觀察圖象回答下列問題:
(1)旅客最多能免費(fèi)攜帶多少千克的行李?
(2)求行李費(fèi)用y(元)與行李質(zhì)量x(千克)之間的函數(shù)關(guān)系式;
(3)一位旅客隨身攜帶了60千克的行李,他應(yīng)交納行李費(fèi)多少元?
(4)另一位旅客交納了120元行李費(fèi),他攜帶的行李重多少千克?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com