如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E。
(1)①寫出圖1中的一對全等三角形;②寫出圖1中線段DE、AD、BE所具有的等量關(guān)系;(不必說明理由)
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),請說明DE=AD-BE的理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DE、AD、BE又具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不必說明理由)。
(1)①△ADC≌△CEB,②DE=CE+CD=AD+BE。 (2)證明△ADC≌△CEB,得CE=AD,CD=BE。
所以DE=CE-CD=AD-BE (3)DE=BE
【解析】
試題分析:解:(1)①如圖1,在△ABC中,∠ACB=90°,,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,,,;因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2013082012341491316302/SYS201308201235186981928546_DA.files/image006.png">,所以,又因?yàn)锳C=BC,所以△ADC≌△CEB,
②由①的結(jié)論知△ADC≌△CEB,所以CD=BE,AD=CE,所以
DE=CE+CD=AD+BE。
(2)∵AD⊥MN于D,BE⊥MN于E。
∴∠ADC=∠BEC=∠ACB=90°,
∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°。
∴∠CAD=∠BCE。
在△ADC和△CEB中
,
∴△ADC≌△CEB。
∴CE=AD,CD=BE。
∴DE=CE-CD=AD-BE。
(3)當(dāng)MN旋轉(zhuǎn)到圖3的位置時(shí),AD、DE、根據(jù)旋轉(zhuǎn)的特征,結(jié)合(1)、(2)DE、AD、BE所滿足的等量關(guān)系是DE=BE(或AD=,BE=AD+DE等)。
考點(diǎn):全等三角形,旋轉(zhuǎn)
點(diǎn)評:本題考查全等三角形,解答本題的關(guān)鍵是掌握全等三角形的判定方法,會證明兩個三角形全等,熟悉旋轉(zhuǎn)的特征,會利用旋轉(zhuǎn)的特征來解答本題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
PE |
CE |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BC2+CD2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
DE |
BD |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com