(2012•遼陽)如圖,大樓AB高16米,遠處有一塔CD,某人在樓底B處測得塔頂?shù)难鼋菫?8.5°,爬到樓頂A處測得塔頂?shù)难鼋菫?2°,求塔高CD及大樓與塔之間的距離BD的長.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )
分析:過點A作AE⊥CD于點E,由題意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,設大樓與塔之間的距離BD的長為x米,則AE=BD=x,分別在Rt△BCD中和Rt△ACE中,用x表示出CD和CE=AE,利用CD-CE=DE得到有關x的方程求得x的值即可.
解答:解:過點A作AE⊥CD于點E,由題意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米
設大樓與塔之間的距離BD的長為x米,則AE=BD=x(不設未知數(shù)x也可以)
∵在Rt△BCD中,tan∠CBD=
CD
BD

∴CD=BD tan 38.5°≈0.8x
∵在Rt△ACE中,tan∠CAE=
CE
AE

∴CE=AE tan 22°≈0.4x
∵CD-CE=DE
∴0.8x-0.4x=16            
∴x=40
即BD=40(米)               
CD=0.8×40=32(米)               
答:塔高CD是32米,大樓與塔之間的距離BD的長為40米.
點評:本題考查的是解直角三角形的應用-仰角俯角問題,解答此題的關鍵是作出輔助線,構造出直角三角形,利用直角三角形的性質(zhì)進行解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•遼陽)如圖,在△ABC中,AB=AC,AB+BC=8.將△ABC折疊,使得點A落在點B處,折痕DF分別與AB、AC交于點D、F,連接BF,則△BCF的周長是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遼陽)如圖,反比例函數(shù)y=
k
x
(k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標系內(nèi)的圖象可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遼陽)如圖,∠PAC=30°,在射線AC上順次截取AD=3cm,DB=10cm,以DB為直徑作⊙O交射線AP于E、F兩點,則線段EF的長是
6
6
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遼陽)如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A′B′C′是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B′C′的位似比;
(3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A′B′C′關于點O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遼陽)如圖,拋物線y=ax2+bx-3交y軸于點C,直線l為拋物線的對稱軸,點P在第三象限且為拋物線的頂點.P到x軸的距離為
10
3
,到y(tǒng)軸的距離為1.點C關于直線l的對稱點為A,連接AC交直線l于B.
(1)求拋物線的表達式;
(2)直線y=
3
4
x+m與拋物線在第一象限內(nèi)交于點D,與y軸交于點F,連接BD交y軸于點E,且DE:BE=4:1.求直線y=
3
4
x+m的表達式;
(3)若N為平面直角坐標系內(nèi)的點,在直線y=
3
4
x+m上是否存在點M,使得以點O、F、M、N為頂點的四邊形是菱形?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案