利用因式分解化簡多項(xiàng)式:1+x+x(1+x)+x(1+x)2+…+x(1+x)2004.
解1:原式=(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2004=(1+x)(1+x)+x(1+x)2+…+x(1+x)2004=(1+x)2+x(1+x)2+…+x(1+x)2004=(1+x)2(1+x)+…+x(1+x)2004=(1+x)3+…+x(1+x)2004=(1+x)2004+x(1+x)2004=(1+x)2005 解2:原式=(1+x)[(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2003]=(1+x)2[(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2002]=…=(1+x)2003[(1+x)+x(1+x)]=(1+x)2004(1+x)=(1+x)2005 解題指導(dǎo):觀察后易發(fā)現(xiàn)需化簡的代數(shù)式的特點(diǎn)是有公因式(1+x),故可用分解因式的方法化簡. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:黃岡學(xué)霸 八年級數(shù)學(xué) 下 新課標(biāo)版 題型:044
利用因式分解化簡多項(xiàng)式:
1+x+x(1+x)+x(1+x)2+…+x(1+x)2005
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:黃岡難點(diǎn)課課練八年級數(shù)學(xué)下冊(北師大版) 題型:044
利用分解因式化簡多項(xiàng)式:
1+x+x(1+x)+x(1+x)2+…+x(1+x)n
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com