(2004•錦州)如圖,⊙O和⊙O′都經(jīng)過點A和點B,點P在BA的延長線上,過P作⊙O的割線PCD交⊙O于C、D,作⊙O′的切線PE切⊙O′于E,若PC=4,CD=5,則PE等于( )

A.6
B.2
C.20
D.36
【答案】分析:根據(jù)割線定理得PA•PB=PC•PD,根據(jù)切割線定理得PE2=PA•PB,所以PE2=PC•PD,從而可求得PE的長.
解答:解:∵PA•PB=PC•PD,PE2=PA•PB,PC=4,CD=5,
∴PE2=PC•PD=36,
∴PE=6.
故選A.
點評:注意:割線定理和切割線定理的運用必須在同一個圓中.這里借助割線PAB,把要求的線段和已知線段建立了關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年上海市虹口區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2004•錦州)如圖,點A在反比例函數(shù)y=的圖象上,AB垂直于x軸,若S△AOB=4,那么這個反比例函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2004•錦州)如圖,點A在反比例函數(shù)y=的圖象上,AB垂直于x軸,若S△AOB=4,那么這個反比例函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2004•錦州)如圖,點P是x軸上一點,以P為圓心的圓分別與x軸、y軸交于A、B、C、D四點,已知A(-3,0)、B(1,0),過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)若點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍時,直線FB與⊙P相交?
(3)若直線FB與⊙P的另一個交點為N,當點N是的中點時,求點F的坐標;
(4)在(3)的條件下,CN交x軸于點M,求CM•CN的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省錦州市中考數(shù)學試卷(解析版) 題型:解答題

(2004•錦州)如圖,點P是x軸上一點,以P為圓心的圓分別與x軸、y軸交于A、B、C、D四點,已知A(-3,0)、B(1,0),過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)若點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍時,直線FB與⊙P相交?
(3)若直線FB與⊙P的另一個交點為N,當點N是的中點時,求點F的坐標;
(4)在(3)的條件下,CN交x軸于點M,求CM•CN的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省錦州市中考數(shù)學試卷(解析版) 題型:填空題

(2004•錦州)如圖,點A在反比例函數(shù)y=的圖象上,AB垂直于x軸,若S△AOB=4,那么這個反比例函數(shù)的解析式為   

查看答案和解析>>

同步練習冊答案