精英家教網(wǎng)如圖,在正方形ABCD中,E是CD邊的中點,AC與BE相交于點F,連接DF.
(1)在不增加點和線的前提下,直接寫出圖中所有的全等三角形;
(2)連接AE,試判斷AE與DF的位置關(guān)系,并證明你的結(jié)論;
(3)延長DF交BC于點M,試判斷BM與MC的數(shù)量關(guān)系.(直接寫出結(jié)論)
分析:根據(jù)正方形的性質(zhì)得到相關(guān)的條件找出全等的三角形:△ADE≌△ABC,△ADF≌△ABF,△ADC≌△ABC,
△CDF≌△CBF;利用全等的關(guān)系求出∠AHD=90°,得到AE⊥DF;同時可判定BM=MC.
解答:解:(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.

(2)AE⊥DF.精英家教網(wǎng)
證明:設(shè)AE與DF相交于點H.
∵四邊形ABCD是正方形,
∴AD=AB,∠DAF=∠BAF.
又∵AF=AF,
∴△ADF≌△ABF.
∴∠1=∠2.
又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,
∴△ADE≌△BCE.
∴∠3=∠4.
∵∠2+∠4=90°,
∴∠1+∠3=90°,
∴∠AHD=90°.
∴AE⊥DF.

(3)∵∠ADE=90°,AE⊥DF.精英家教網(wǎng)
∴∠1+∠5=90°,∠3+∠1=90°.
∴∠3=∠5,
∵∠3=∠4,
∴∠4=∠5.
∵DC=BC,∠DCM=∠BCE=90°,
∴△DCM≌△BCE.
∴CE=CM,
又∵E為CD中點,且CD=CB,
∴CE=
1
2
CD=
1
2
BC,
∴CM=
1
2
CB,即M為BC中點,
∴BM=MC.
點評:主要考查了正方形的性質(zhì)和全等三角形的判定.充分利用正方形的特殊性質(zhì)來找到全等的條件從而判定全等后利用全等三角形的性質(zhì)解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習(xí)冊答案