【題目】如圖,以⊙O的弦AB為斜邊作Rt△ABC,C點在圓內(nèi),邊BC經(jīng)過圓心O,過A點作⊙O的切線AD.
(1)求證:∠DAC=2∠B;
(2)若sinB=,AC=6,求⊙O的半徑.
【答案】(1)詳見解析;(2).
【解析】
(1)連接AO,由AD為切線,根據(jù)切線的性質(zhì)得∠OAD=90°,從而由同角的余角相等得結(jié)論;
(2)設(shè)⊙O的半徑OA=r,求出BC=8,然后在Rt△ACO中根據(jù)勾股定理列方程可得結(jié)論.
(1)證明:連接OA,
∵AD是⊙O的切線,
∴OA⊥AD,
∴∠OAD=∠CAD+∠OAC=90°,
∵∠C=90°,
∴∠OAC+∠AOC=90°,
∴∠CAD=∠AOC,
∵OA=OB,
∴∠B=∠OAB,
∴∠CAD=∠AOC=∠B+∠OAB=2∠B;
(2)解:設(shè)OA=r,則OB=r,
在Rt△CAB中,sinB=,
∵AC=6,
∴AB=10,
∴BC=8,
在Rt△ACO中,由勾股定理得:AC2+CO2=AO2,
∴62+(8﹣r)2=r2,
解得:r=,
答:⊙O的半徑是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)y2=(k2≠0)的圖象交于點A(m,1)與點B(﹣1,﹣4).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象說明,當x為何值時,k1x+b﹣<0;
(3)若動點P是第一象限內(nèi)雙曲線上的點(不與點A重合),連接OP,過點P作y軸的平行線交直線AB于點C,連接OC,若△POC的面積為3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進“森林城市”建設(shè),今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中松樹所對的圓心角為 度,并補全條形統(tǒng)計圖.
(2)該市今年共種樹16萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對角線AC將正方形ABCD分成兩個等腰三角形,點E,F將對角線AC三等分,且AC=15,點P在正方形的邊上,則滿足PE+PF=5的點P的個數(shù)是( 。
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,, ,點為邊上的動點(點不與點,重合).以點為頂點作,射線交邊于點,過點作交射線于,連接.
(1)求證:;
(2)當時(如圖),求的長;
(3)點在邊上運動的過程中,是否存在某個位置,使得?若存在,求出此時的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】象棋是棋類益智游戲,中國象棋在中國有著三千多年的歷史,由于用具簡單,趣味性強,成為流行極為廣泛的棋藝活動.李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個“兵”、一個“馬”、一個“士”,張萌隨機從這四枚棋子中摸一枚棋子,記下正漢字,然后再從剩下的三枚棋子中隨機摸一枚.
(1)求張萌第一次摸到的棋子正面上的漢字是“兵”的概率;
(2)游戲規(guī)定:若張萌兩次摸到的棋子中有“士”,則張萌勝;否則,李凱勝.請你用樹狀圖或列表法求李凱勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017內(nèi)蒙古通遼市)如圖,物理教師為同學們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.求:
(1)單擺的長度(≈1.7);
(2)從點A擺動到點B經(jīng)過的路徑長(π≈3.1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com