精英家教網 > 初中數學 > 題目詳情
如圖,等腰直角三角形ABC(∠C=90°)的直角邊長與正方形MNPQ的邊長均為4cm,CA與MN在同一直線上,開始時A點與M點重合,讓△ABC向右平移,直到C點與N點重合時為止,設△ABC與正方形MNPQ的重疊部分(圖中陰影部分)的面積為ycm2,MA的長度為xcm,則y與x之間的函數關系大致為( )

A.
B.
C.
D.
【答案】分析:首先確定每段與x的函數關系類型,根據函數的性質確定選項.
解答:解:當x≤4cm時,重合部分是邊長是x的等腰直角三角形,面積y=x2,是一個開口向上的二次函數;
當x>4時,重合部分是直角梯形,面積y=8-(x-4)2,即y=-x2+4x,是一個開口向下的二次函數.
故選B.
點評:本題要求正確理解函數圖象與實際問題的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,等腰直角三角形ABC繞C點按順時針旋轉到△A1B1C1的位置(A、C、B1在同一直線上),∠B=90°,如果AB=1,那么AC運動到A1C1所經過的圖形的面積是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,等腰直角三角形ABC的腰長與正方形DEFG的邊長相符,且邊AC與DE在同一直線l上,△ABC從如圖所示的起始位置(A、E重合),沿直線l水平向右平移,直至C、D重合為止.設△ABC與正方形DEFG重疊部分的面積為y,平移的距離為x,則y與x之間的函數關系大致是(  )
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等腰直角三角形ABC中,∠BAC=90°,D、E分別為AB、AC邊上的點,AD=AE,AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M.
(1)求證:△ADC≌△AEB;
(2)判斷△EGM是什么三角形,并證明你的結論;
(3)判斷線段BG、AF與FG的數量關系并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等腰直角三角形△ABC中,∠ACB=90°,點D是BC的中點,CE⊥AD于點F交AB于點E,CH是AB上的高交AD于點G.
(1)找出圖中的全等三角形;
(2)找出與∠ADC相等的角,并請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等腰直角三角形AEF的頂點E在等腰直角三角形ABC的邊BC上.AB的延長線交EF于D點,其中∠AEF=∠ABC=90°.
(1)求證:
AD
AE
=
2
AE
AC
;
(2)若E為BC的中點,求
DB
DA
的值.

查看答案和解析>>

同步練習冊答案