【題目】為了迎接鄭州市第二屆“市長(zhǎng)杯”青少年校園足球超級(jí)聯(lián)賽,某學(xué)校組織了一次體育知識(shí)競(jìng)賽.每班選25名同學(xué)參加比賽,成績(jī)分別為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)得分依次記為100分、90分、80分、70分.學(xué)校將八年級(jí)一班和二班的成績(jī)整理并繪制成統(tǒng)計(jì)圖,如圖所示.

(1)把一班競(jìng)賽成績(jī)統(tǒng)計(jì)圖補(bǔ)充完整;

(2)寫出下表中a、b、c的值:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

一班

a

b

90

106.24

二班

87.6

80

c

138.24

(3)根據(jù)(2)的結(jié)果,請(qǐng)你對(duì)這次競(jìng)賽成績(jī)的結(jié)果進(jìn)行分析.

【答案】(1)一班中C級(jí)的有2人;(2)a=87.6,b=90,c=100;(3)從平均數(shù)和中位數(shù)的角度,一班和二班平均數(shù)相等,一班的中位數(shù)大于二班的中位數(shù),故一班成績(jī)好于二班.從平均數(shù)和眾數(shù)的角度,一班和二班平均數(shù)相等,一班的眾數(shù)小于二班的眾數(shù),故二班成績(jī)好于一班.從B級(jí)以上(包括B級(jí))的人數(shù)的角度,一班有18人,二班有12人,故一班成績(jī)好于二班.

【解析】

(1)根據(jù)總?cè)藬?shù)為25人,求出等級(jí)C的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;

(2)求出一班的平均分與中位數(shù)得到ab的值,求出二班得眾數(shù)得到c的值即可;

(3)分三種情況討論,分別根據(jù)一班和二班的平均數(shù)和中位數(shù)、一班和二班的平均數(shù)和眾數(shù)以及B級(jí)以上(包括B級(jí))的人數(shù)進(jìn)行分析,即可得出合理的答案.

(1)一班中C級(jí)的有25﹣6﹣12﹣5=2人,補(bǔ)圖如下:

(2)根據(jù)題意得:

a=(6×100+12×90+2×80+70×5)÷25=87.6;

中位數(shù)為90分,

二班的眾數(shù)為100分,

a=87.6,b=90,c=100;

(3)①?gòu)钠骄鶖?shù)和中位數(shù)的角度,一班和二班平均數(shù)相等,一班的中位數(shù)大于二班的中位數(shù),故一班成績(jī)好于二班

②從平均數(shù)和眾數(shù)的角度,一班和二班平均數(shù)相等,一班的眾數(shù)小于二班的眾數(shù),故二班成績(jī)好于一班;

③從B級(jí)以上(包括B級(jí))的人數(shù)的角度,一班有18人,二班有12人,故一班成績(jī)好于二班.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)結(jié)合圖象直接寫出不等式kx+b< 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地新建的一個(gè)企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購(gòu)置污水處理器,并在如下兩個(gè)型號(hào)種選擇:

污水處理器型號(hào)

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺(tái)A型、3臺(tái)B型污水處理器的總價(jià)為44萬(wàn)元,售出的1臺(tái)A型、4臺(tái)B型污水處理器的總價(jià)為42萬(wàn)元.
(1)求每臺(tái)A型、B型污水處理器的價(jià)格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購(gòu)買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(2﹣(π﹣0+|﹣2|+4sin60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】首條貫通絲綢之路經(jīng)濟(jì)帶的高鐵線﹣寶蘭客專進(jìn)入全線拉通試驗(yàn)階段,寶蘭客專的通車對(duì)加快西北地區(qū)與一帶一路沿線國(guó)家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義.試運(yùn)行期間,一列動(dòng)車從西安開(kāi)往西寧,一列普通列車從西寧開(kāi)往西安,兩車同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:

【信息讀取】

1)西寧到西安兩地相距 千米,兩車出發(fā)后 小時(shí)相遇;

2)普通列車到達(dá)終點(diǎn)共需 小時(shí),普通列車的速度是 千米/小時(shí).

【解決問(wèn)題】

3)求動(dòng)車的速度;

4)普通列車行駛t小時(shí)后,動(dòng)車到達(dá)終點(diǎn)西寧,求此時(shí)普通列車還需行駛多少千米到達(dá)西安?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的反稱點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P′,滿足CP+CP′=2r,則稱P′為點(diǎn)P關(guān)于⊙C的反稱點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的反稱點(diǎn)P′的示意圖.
特別地,當(dāng)點(diǎn)P′與圓心C重合時(shí),規(guī)定CP′=0

(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(2,1),N(,0),T(1,)關(guān)于⊙O的反稱點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)P在直線y=﹣x+2上,若點(diǎn)P關(guān)于⊙O的反稱點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A,B,若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的反稱點(diǎn)P′在⊙C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬(wàn)元;本周已售出2輛A型車和1輛B型車,銷售額為62萬(wàn)元.
(1)求每輛A型車和B型車的售價(jià)各為多少元.
(2)甲公司擬向該店購(gòu)買A,B兩種型號(hào)的新能源汽車共6輛,購(gòu)車費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元.則有哪幾種購(gòu)車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點(diǎn)A、B,再將△A0B沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合.折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.

(1)點(diǎn)A的坐標(biāo)為  ;點(diǎn)B的坐標(biāo)為  ;

(2)求OC的長(zhǎng)度,并求出此時(shí)直線BC的表達(dá)式;

(3)直線BC上是否存在一點(diǎn)M,使得△ABM的面積與△ABO的面積相等?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案