【題目】某市將實行居民生活用電階梯電價方案,如下表,圖中折線反映了每戶居民每月電費(元)與用電量(度)間的函數(shù)關(guān)系.

檔次

第一檔

第二檔

第三檔

每月用電量(度)

1)小王家某月用電度,需交電費___________元;

2)求第二檔電費(元)與用電量(度)之間的函數(shù)關(guān)系式;

3)小王家某月用電度,交納電費元,請你求出第三檔每度電費比第二檔每度電費多多少元?

【答案】160;(2;(3)第三檔每度電費比第二檔每度電費多.

【解析】

1)求出第一檔yx的關(guān)系,即可解決問題;
2)利用待定系數(shù)法即可解決問題;
3)設(shè)第三檔每度電費比第二檔每度電費多x元.構(gòu)建方程即可解決問題;

解:(1)設(shè)第一檔yx的關(guān)系為y=kx,

把(12072)代入得到,72=120k,
解得:k=
,
x=100時,y=60
故答案為:60;

2)設(shè)第二檔的關(guān)系,

則有

解得:,

.

3)設(shè)第三檔每度電費比第二檔每度電費多元,

解得:(元).

∴第三檔每度電費比第二檔每度電費多.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(1-m)x+2m-3

1)若函數(shù)圖象經(jīng)過原點,求m的值;

2)若yx增大而減小,求m的取值范圍

3)若函數(shù)圖象平行于y=2x-3,求這個函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形的邊長為,有一動點的速度沿的路徑運動,設(shè)點運動的時間為的面積為

是等腰直角三角形時,直接寫出的值.答:________;

的函數(shù)關(guān)系式并寫出自變量的取值范圍;

為何值時,的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

材料.若一元二次方程 的兩根為 ,,則,

材料.已知實數(shù) 滿足 ,,且 ,求的值.

解:由題知 是方程 的兩個不相等的實數(shù)根,

根據(jù)材料 ,

解決問題

(1)一元二次方程 的兩根為 ,則

(2)已知實數(shù) , 滿足 ,,且,求

的值.

(3)已知實數(shù) 滿足 ,,且 ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

我們知道,分式類比分數(shù),分數(shù)中有真分數(shù)、假分數(shù)、帶分數(shù)、類似的,在分式中,也規(guī)定真分式、假分式、帶分式;在分子、分母都是整式的情況下,如果分子的次數(shù)低于分母的次數(shù),稱這樣的分式為真分式.例如,分式,是假分式,一個假分式可以化為帶分式,即化為一個整式與一個真分式的和,例如,.(注意帶分式中整式與真分式之間的符號不能省略)

請根據(jù)以上方法,解決下列問題;

(1)請根據(jù)以上信息,任寫一個真分式 .

(2)已知:;

①當時,若都為正整數(shù),求的值;

②計算,設(shè),探索是否有最小值,若有,請求出的值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向。為了在臺風(fēng)到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行多少小時即可到達? (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價格購進800T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.

1)填表:(不需化簡)

2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:梯形ABCD中,ADBCABC=90°,AD=4, AB=3,,在線段BC上取一點P(不與B、C重合),聯(lián)結(jié)DP,作射線PQDP,PQ與直線AB交于點Q

(1)求出梯形ABCD的面積;

(2)若點Q在邊AB上,設(shè)CP=x,AQ=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式,并寫出定義域.

(3)DPC是等腰三角形,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線為一、三象限角平分線.點P關(guān)于y軸的對稱點稱為P的一次反射點,記作關(guān)于直線的對稱點稱為點P的二次反射點,記作.例如,點的一次反射點為,二次反射點為.根據(jù)定義,回答下列問題:

1)點的一次反射點為________,二次反射點為__________

2)當點A在第一象限時,點,中可以是點A的二次反射點的是_________

3)若點A在第二象限,點分別是點A的一次、二次反射點,△為等邊三角形,求射線OAx軸所夾銳角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案