【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CED=35°,如圖,則∠EAB是多少度?

【答案】解:過點(diǎn)E作AD的垂線,垂足為F,∵∠DFE=∠C=90°,DE平分∠ADC,DE=DE,
∴△DCE≌△DFE(AAS),
∴∠DEC=∠DEF,EC=EF,
又∵EC=EB,則EF=EB,且∠B=∠EFA=90°,AE=AE,
∴△AFE≌△ABE(HL),
∴∠FEA=∠BEA,
又∵∠DEC+∠DEF+∠FEA+∠BEA=180°,
∴∠AED=90°,
∴∠CED+∠BEA=90°,
又∠EAB+∠BEA=90°,
∴∠EAB=∠CED=35°.

【解析】過點(diǎn)E作AD的垂線,垂足為F,根據(jù)∠DFE=∠C=90°,DE平分∠ADC,可證△DCE≌△DFE,可得∠DEC=∠DEF,EC=EF,又已知EC=EB,可得EF=EB,且∠B=∠EFA=90°,可證△AFE≌△ABE,可知∠FEA=∠BEA,又∠DEC+∠DEF+∠FEA+∠BEA=180°,從而可得∠AED=90°再利用互余關(guān)系證明∠EAB=∠CED.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和角平分線的性質(zhì)定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.

試求:
(1)AC的長;
(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年入秋以來,某省發(fā)生了百年一遇的旱災(zāi),連續(xù)8個(gè)多月無有效降水,為抗旱救災(zāi),某部隊(duì)計(jì)劃為駐地村民新修水渠3600米,為了水渠能盡快投入使用,實(shí)際工作效率是原計(jì)劃工作效率的1.8倍,結(jié)果提前20天完成修水渠任務(wù).問原計(jì)劃每天修水渠多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各組數(shù)中,相等的一組是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).

(1)用的代數(shù)式表示PC的長度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.

(1)求∠2、∠3的度數(shù);
(2)說明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A、B兩點(diǎn)所表示的數(shù)分別為-4、2,O為原點(diǎn),點(diǎn)M是線段AB的中點(diǎn),在線段AB上取點(diǎn)C,使AC = BC. 則:

(1)求點(diǎn)M和點(diǎn)C所表示的有理數(shù);
(2)點(diǎn)M是線段OC的中點(diǎn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bx經(jīng)過A(2,0),B(3,-3)兩點(diǎn),拋物線的頂點(diǎn)為C,動(dòng)點(diǎn)P在直線OB上方的拋物線上,過點(diǎn)P作直線PMy軸,交x軸于M,交OBN,設(shè)點(diǎn)P的橫坐標(biāo)為m

1求拋物線的解析式及點(diǎn)C的坐標(biāo);

2當(dāng)△PON為等腰三角形時(shí),點(diǎn)N的坐標(biāo)為 ;當(dāng)PMOCOB時(shí),點(diǎn)P的坐標(biāo)為 ;(直接寫出結(jié)果)

(3)直線PN能否將四邊形ABOC分為面積比為1:2的兩部分?若能,請(qǐng)求出m的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長線上,且GA=GE.

(1) 求證:AG與⊙O相切;

(2)AC5AB12,BE,求線段OE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案