如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2)在二次函數(shù)y=ax2+(a+5)x的圖象上.

(1)求該二次函數(shù)的關(guān)系式;

(2)點C是否在此二次函數(shù)的圖象上,說明理由;

(3)若點P為直線OC上一個動點,過點P作y軸的平行線交拋物線于點M,問是否存在這樣的點P,使得四邊形ABMP為平行四邊形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.

 

【答案】

(1);(2)在;(3)存在 ,

【解析】

試題分析:(1)由題意把A(1,2)代入二次函數(shù)y=ax2+(a+5)x即可求得結(jié)果;

(2)先根據(jù)Rt△AOB和Rt△COD全等求得點C的坐標(biāo),再結(jié)合(1)中的函數(shù)關(guān)系式求解;

(3)根據(jù)平行四邊形的性質(zhì)結(jié)合函數(shù)圖象上的點的坐標(biāo)特征求解即可.

(1)由題意得,解得

所以該二次函數(shù)的關(guān)系式為;

(2)∵Rt△AOB和Rt△COD全等,點A坐標(biāo)為(1,2)

∴點C坐標(biāo)為(2,1)

中,當(dāng)時,

∴點C在此二次函數(shù)的圖象上;

(3)存在,.

考點:二次函數(shù)的綜合題

點評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把兩個全等的腰長為8的等腰直角三角形沿他們的斜邊拼接得到四邊形ABCD,N是斜邊AC上一精英家教網(wǎng)動點.
(1)若E、F為AC的三等分點,求證:∠ADE=∠CBF;
(2)若M是DC上一點,且DM=2,求DN+MN的最小值;
(注:計算時可使用如下定理:在直角△ABC中,若∠C=90°,則AB2=AC2+BC2
(3)若點P在射線BC上,且NB=NP,求證:NP⊥ND.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州)如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.
(1)求該拋物線的函數(shù)解析式;
(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)如圖,把兩個全等的Rt△AOB和Rt△ECD分別置于平面直角坐標(biāo)系xOy中,使點E與點B重合,直角邊OB、BC在y軸上.已知點D (4,2),過A、D兩點的直線交y軸于點F.若△ECD沿DA方向以每秒
2
個單位長度的速度勻速平移,設(shè)平移的時間為t(秒),記△ECD在平移過程中某時刻為△E′C′D′,E′D′與AB交于點M,與y軸交于點N,C′D′與AB交于點Q,與y軸交于點P(注:平移過程中,點D′始終在線段DA上,且不與點A重合).
(1)求直線AD的函數(shù)解析式;
(2)試探究在△ECD平移過程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個最大值及t的取值;若不存在,請說明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標(biāo)軸有兩個公共點時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆四川德陽市中江縣柏樹中學(xué)九年級下學(xué)期第一次月考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.

(1)求該拋物線的函數(shù)解析式;
(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年四川德陽市九年級下學(xué)期第一次月考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.

(1)求該拋物線的函數(shù)解析式;

(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.

(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案