(2002•內(nèi)江)如果m,n是兩個不相等的實數(shù),且滿足m2-2m=1,n2-2n=1,那么代數(shù)式2m2+4n2-4n+1999=   
【答案】分析:由于m,n是兩個不相等的實數(shù),且滿足m2-2m=1,n2-2n=1,可知m,n是x2-2x-1=0兩個不相等的實數(shù)根.則根據(jù)根與系數(shù)的關系可知:m+n=2,又m2=2m+1,n2=2n+1,利用它們可以化簡2m2+4n2-4n+1999=2(2m+1)+4(2n+1)-4n+1999=4m+2+8n+4-4n+1999=4(m+n)+2005,然后就可以求出所求的代數(shù)式的值.
解答:解:由題意可知:m,n是兩個不相等的實數(shù),且滿足m2-2m=1,n2-2n=1,
所以m,n是x2-2x-1=0兩個不相等的實數(shù)根,
則根據(jù)根與系數(shù)的關系可知:m+n=2,
又m2=2m+1,n2=2n+1,
則2m2+4n2-4n+1999
=2(2m+1)+4(2n+1)-4n+1999
=4m+2+8n+4-4n+1999=4(m+n)+2005
=4×2+2005=2013.
故填空答案:2013.
點評:本題考查一元二次方程根與系數(shù)的關系,解題關鍵是把所求代數(shù)式化成兩根之和、兩根之積的系數(shù),然后利用根與系數(shù)的關系式求值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:解答題

(2002•內(nèi)江)如圖,一次函數(shù)y=-x+3的圖象交x軸于點A,交y軸于點Q,拋物線y=ax2+bx+c(a≠0)的頂點為C,其圖象過A、Q兩點,并與x軸交于另一個點B(B點在A點左側(cè)),△ABC三內(nèi)角∠A、∠B、∠C的對邊為a,b,c.若關于x的方程a(1-x2)+2bx+c(1+x2)=0有兩個相等實數(shù)根,且a=b;
(1)試判定△ABC的形狀;
(2)當時求此拋物線的解析式;
(3)拋物線上是否存在點P,使S△ABP=S四邊形ACBQ?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•內(nèi)江)如圖,一次函數(shù)y=-x+3的圖象交x軸于點A,交y軸于點Q,拋物線y=ax2+bx+c(a≠0)的頂點為C,其圖象過A、Q兩點,并與x軸交于另一個點B(B點在A點左側(cè)),△ABC三內(nèi)角∠A、∠B、∠C的對邊為a,b,c.若關于x的方程a(1-x2)+2bx+c(1+x2)=0有兩個相等實數(shù)根,且a=b;
(1)試判定△ABC的形狀;
(2)當時求此拋物線的解析式;
(3)拋物線上是否存在點P,使S△ABP=S四邊形ACBQ?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:填空題

(2002•內(nèi)江)如圖,以△ABC的BC邊為直徑的半圓交AB于D,交AC于E,EF⊥BC,垂足為F,BF:FC=5:1,AB=8cm,AE=2cm.則AD的長是    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•內(nèi)江)如圖,以Rt△BCF的斜邊BC為直徑作⊙O,A為上一點,且=,AD⊥BC,垂足為D,過A作AE∥BF交CB的延長線于E.
求證:
(1)AE是⊙O切線;
(2);
(3)若⊙O直徑為d,則

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2002•內(nèi)江)如圖,以△ABC的BC邊為直徑的半圓交AB于D,交AC于E,EF⊥BC,垂足為F,BF:FC=5:1,AB=8cm,AE=2cm.則AD的長是    cm.

查看答案和解析>>

同步練習冊答案