【題目】解方程:

1x274x

2x22x;

3x26x+9=(52x2

【答案】1x12+,x22;(2x10,x22;(3x1x2

【解析】

(1)利用配方法求解即可;

(2)利用因式分解法求解即可;

(3)利用因式分解法求解即可.

解:(1)x274x,

x24x7

x24x+47+4,即(x2211,

x2,

x12+x22;

(2)x22x

x22x0,

xx2)=0,

x10,x22

(3)x26x+9=(52x2

x32﹣(2x520,

x3+2x5)(x32x+5)=0,

3x80或﹣x+20,

解得:x1x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A1,0),C03)兩點,與x軸交于點B

1)若直線ymx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo):

3)在拋物線上存在點P(不與C重合),使得APB的面積與ACB的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MN是⊙O的直徑,點Q在⊙O上,將劣弧沿弦MQ翻折交MN于點P,連接PQ,若∠PMQ16°,則∠PQM的度數(shù)為(  )

A.32°B.48°C.58°D.74°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABO的直徑,ACO的弦,過O點作OFABO于點D,交AC于點E,交BC的延長線于點F,點GEF的中點,連接CG

(1)判斷CGO的位置關(guān)系,并說明理由;

(2)求證:2OB2BCBF;

(3)如圖2,當(dāng)∠DCE2F,CE3DG2.5時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線y=x2+bx+c過點A3,0),B1,0),交y軸于點C,點P是該拋物線上一動點,點PC點沿拋物線向A點運動(點P不與點A重合),過點PPDy軸交直線AC于點D

1)求拋物線的解析式;

2)求點P在運動的過程中線段PD長度的最大值;

3APD能否構(gòu)成直角三角形?若能請直接寫出點P坐標(biāo),若不能請說明理由;

4)在拋物線對稱軸上是否存在點M使|MAMC|最大?若存在請求出點M的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于AB兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A1,0),C02).

1)求拋物線的表達式;

2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;

3)點E時線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是等邊三角形,點D、E分別在BC、AC上,且CEBD,BE、AD相交于點F.求證:

(1)ABD≌△BCE;

(2)AEF∽△ABE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物y=ax2+bx+c(b<0)與軸只有一個公共點.

(1)若公共點坐標(biāo)為(20),求ac滿足的關(guān)系式;

(2)設(shè)A為拋物線上的一定點,直線ly=kx+1k與拋物線交于點B、C兩點,直線BD垂直于直線y=1,垂足為點D.當(dāng)k0時,直線l與拋物線的一個交點在y軸上,且ABC為等腰直角三角形.

①求點A的坐標(biāo)和拋物線的解析式;

②證明:對于每個給定的實數(shù)k,都有A、D、C三點共線.

查看答案和解析>>

同步練習(xí)冊答案