如圖,已知直線l的解析式為,拋物線y = ax2+bx+2經(jīng)過點A(m,0),B(2,0),D 三點.
(1)求拋物線的解析式及A點的坐標(biāo),并在圖示坐標(biāo)系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E, 延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標(biāo)x的函數(shù), 并求出S的最大值及S最大時點P的坐標(biāo);
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關(guān)于x軸的對稱點一定在PB所在直線上.
(1),(–4,0),作圖見解析;(2),其中–4 < x < 0,12,(–2,2);(3)證明見解析.
解析試題分析:(1)根據(jù)點在曲線上點的坐標(biāo)滿足方程的關(guān)系,由y = ax2+bx+2經(jīng)過B(2,0),D ,將兩點坐標(biāo)分別代入得關(guān)于a,b的二元一次方程組,解之即可得拋物線的解析式為;將A(m,0)代入所求解析式即可求出m,得到A點的坐標(biāo)描點作出函數(shù)圖象.
(2)根據(jù)得到四邊形PAFB的面積S表示為點P的橫坐標(biāo)x的函數(shù);應(yīng)用二次函數(shù)最值原理求出S的最大值及S最大時點P的坐標(biāo).
(3)應(yīng)用待定系數(shù)法求出PB所在直線的解析式,設(shè)出上的任一點的坐標(biāo),求出其關(guān)于x軸的對稱點的坐標(biāo),代入PB所在直線的解析式,滿足即得結(jié)論.
試題解析:(1)∵y = ax2+bx+2經(jīng)過B(2,0),D ,
∴,解得
∴拋物線的解析式為.
∵A(m,0)在拋物線上,∴,解得.
∴A(–4,0).
作拋物線的大致圖象如下:
(2)∵由題設(shè)知直線l的解析式為,∴.
又∵AB=6,∴.
∴將四邊形PAFB的面積S表示為點P的橫坐標(biāo)x的函數(shù)為,其中–4 < x < 0.
∵,
∴S最大= 12,此時點P的坐標(biāo)為(–2,2).
(3)∵ 直線PB過點P(–2,2)和點B(2,0),
∴PB所在直線的解析式為.
設(shè)Q是上的任一點,則Q點關(guān)于x軸的對稱點為.
將代入顯然成立.
∴直線l上任意一點關(guān)于x軸的對稱點一定在PB所在的直線上 .
考點:1.二次函數(shù)與一次函數(shù)綜合題;2.待定系數(shù)法的應(yīng)用;3.曲線上點的坐標(biāo)與方程的關(guān)系;4.由實際問題列函數(shù)關(guān)系式;5.二次函數(shù)最值的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù),其圖像拋物線交軸的于點A(1,0)、B(3,0),交y軸于點C.直線過點C,且交拋物線于另一點E(點E不與點A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線經(jīng)過拋物線頂點D,交軸于點F,且∥,則以點C、D、E、F為頂點的四邊形能否為平行四邊形?若能,求出點E的坐標(biāo);若不能,請說明理由.
(3)若過點A作AG⊥軸,交直線于點G,連OG、BE,試證明OG∥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(,0)和(,0)兩點.
(1)求此二次函數(shù)的表達式.
(2)直接寫出當(dāng)<x<1時,y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)圖象交點的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知直角坐標(biāo)系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形。
(1)求滿足條件的所有點B的坐標(biāo)。(直接寫出答案)
(2)求過O、A、B三點且開口向下的拋物線的函數(shù)解析式。(只需求出滿足條件的即可)。
(3)在(2)中求出的拋物線上存在點p,使得以O(shè)、A、B、P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標(biāo)及相應(yīng)梯形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,與相等嗎?請證明你的結(jié)論;
(3)設(shè)點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應(yīng)函數(shù)的解析式;若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=ax2+2x+c的頂點為A(―1,―4),與y軸交于點B,與x軸負半軸交于點C.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)點P為第三象限內(nèi)拋物線上的一動點,連接BC、PC、PB,求△BCP面積的最大值,并求出此時點P的坐標(biāo);
(3)點E為拋物線上的一點,點F為x軸上的一點,若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過A(,0),C(2,-3)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式及頂點坐標(biāo);
(2)若將此拋物線平移,使其頂點為點D,需如何平移?寫出平移后拋物線的解析式;
(3)過點P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點E,F(xiàn),交直線OC于點G,求證:PF=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(-2,0),點B坐標(biāo)為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.
(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com