【題目】某同學(xué)練習(xí)推鉛球,鉛球推出后在空中飛行的軌跡是一條拋物線,鉛球在離地面1米高的A處推出,達(dá)到最高點B時的高度是2.6米,推出的水平距離是4米,鉛球在地面上點C處著地

1)根據(jù)如圖所示的直角坐標(biāo)系求拋物線的解析式;

2)這個同學(xué)推出的鉛球有多遠(yuǎn)?

【答案】1)拋物線的解析式為:y=﹣0.1x42+2.6;(2)這個同學(xué)推出的鉛球有(+4)米遠(yuǎn).

【解析】

1)設(shè)拋物線的解析式為yax42+2.6,由待定系數(shù)法求出其解即可;

2)當(dāng)y0時代入(1)的解析式,求出其解即可.

解:(1)設(shè)拋物線的解析式為yax42+2.6,

由題意,得1a042+2.6,

解得:a=﹣0.1

y=﹣0.1x42+2.6

∴拋物線的解析式為:y=﹣0.1x42+2.6;

2)由題意,得,當(dāng)y0時,﹣0.1x42+2.60,

解得:x1+4x2=﹣+40(舍去),

x+4

答:這個同學(xué)推出的鉛球有(+4)米遠(yuǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學(xué)共有   人;

2)補全條形統(tǒng)計圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).

(1)畫出△ABC;

(2)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1點的坐標(biāo):   

(3)以O為位似中心,在第一象限內(nèi)把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標(biāo):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形”.

1)已知:如圖,四邊形ABCD等對角四邊形, ,則∠C= ;

2)已知:在等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°AB=4 , AD=3.求對角線AC的長;

3)已知:如圖,在平面直角坐標(biāo)系xoy中,四邊形ABCD等對角四邊形,其中,Dy軸上,拋物線過點A、C,P在拋物線上,當(dāng)滿足P點至少有3個時,總有不等式成立,求n 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學(xué)共有   人;

2)補全條形統(tǒng)計圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點A(4,n),ABx軸,垂足為B.

(1)求k的值;

(2)點CAB上,若OC=AC,求AC的長;

(3)點Dx軸正半軸上一點,在(2)的條件下,若SOCD=SACD,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,ABC的三個頂點的坐標(biāo)分別為A5,4),B0,3),C2,1).

1)畫出ABC關(guān)于原點成中心對稱的A1B1C1,并寫出點C1的坐標(biāo);

2)畫出將A1B1C1繞點C1按順時針旋轉(zhuǎn)90°所得的A2B2C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正方形紙片ABCD沿EF折疊(E,F分別在邊AB,CD),使點B落在AD邊上的點M處(點M不與A,D重),點C落在點N處,MNCD交于點P, 連接MB,當(dāng)點M在邊AD上移動時.有下列結(jié)論:①BM=EF;②0PF3 ;③∠AMB=BMP;④PDM的周長隨之改變.其中正確結(jié)論的序號是_______.(把你認(rèn)為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5mCD=8m,求樹高。

查看答案和解析>>

同步練習(xí)冊答案