【題目】如圖,已知正方形ABCD的面積等于25,直線a,b,c分別過A,B,C三點(diǎn),且a∥b∥c,EF⊥直線c,垂足為點(diǎn)F交直線a于點(diǎn)E,若直線a,b之間的距離為3,則EF=( 。
A. 1B. 2C. -3D. 5-
【答案】A
【解析】
延長AE交BC于N點(diǎn),過B點(diǎn)作BM⊥AN于M點(diǎn),過N點(diǎn)作NH⊥FC于H點(diǎn),在Rt△ABM和Rt△BMN中,易得cos∠BAM=cos∠MBN,即,解得BN=,從而求出CN長度,在Rt△HNC中,利用cos∠HNC=cos∠MBN=,求出NH長度,最后借助EF=NH即可.
解:延長AE交BC于N點(diǎn),過B點(diǎn)作BM⊥AN于M點(diǎn),過N點(diǎn)作NH⊥FC于H點(diǎn),
因?yàn)檎叫蔚拿娣e為25,所以正方形的邊長為5.
在Rt△ABM中,AB=5,BM=3,利用勾股定理可得AM=4.
∵∠BAM+∠ABM=90°,∠NBM+∠ABM=90°,
∴∠MBN=∠BAM.
∴cos∠BAM=cos∠MBN,即 ,解得BN=.
∴CN=BC-BN=.
∵∠HNC=∠MBN,
∴cos∠HNC=cos∠MBN=.
∴ ,解得NH=1.
∵a∥c,EF⊥FC,NH⊥FC,
∴EF=NH=1.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,∠BCA=30°,點(diǎn)D在BC上,點(diǎn)E在△ABC外,且AD=AE=CE,AD⊥AE,則的值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:
第一組:2,4;
第二組:6,8,10,12;
第三組:14,16,18,20,22,24
第四組:26,28,30,32,34,36,38,40
……
則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個(gè)數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在O處(注:∠DOE=90°).
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=______;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,則∠BOD=______;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD=∠AOE,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象l1分別與x軸,y軸交于A(15,0),B兩點(diǎn),正比例函數(shù)y=x的圖象l2與l1交于點(diǎn)C(m,3).
(1)求m的值及l1所對應(yīng)的一次函數(shù)表達(dá)式;
(2)根據(jù)圖象,請直接寫出在第一象限內(nèi),當(dāng)一次函數(shù)y=kx+b的值大于正比例函數(shù)y=x的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1,在△ABC中,AB=AC,CF為AB邊上的高,點(diǎn)P為BC邊上任意一點(diǎn),PD⊥AB,PE⊥AC,垂足分別為點(diǎn)D,E.求證:PD+PE=CF.
嘉嘉的證明思路:連結(jié)AP,借助△ABP與△ACP的面積和等于△ABC的面積來證明結(jié)論.
淇淇的證明思路:過點(diǎn)P作PG⊥CF于G,可證得PD=GF,PE=CG,則PD+PE=CF.
遷移:請參考嘉嘉或淇淇的證明思路,完成下面的問題:
(1)如圖2.當(dāng)點(diǎn)P在BC延長線上時(shí),其余條件不變,上面的結(jié)論還成立嗎?若不成立,又存在怎樣的關(guān)系?請說明理由;
(2)當(dāng)點(diǎn)P在CB延長線上時(shí),其余條件不變,請直接寫出線段PD,PE和CF之間的數(shù)量關(guān)系.
運(yùn)用:如圖3,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B處,點(diǎn)C落在點(diǎn)C′處.若點(diǎn)P為折痕EF上任一點(diǎn),PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接寫出PG+PH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的運(yùn)算程序中,若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對應(yīng)點(diǎn)A'恰好落在BC的垂直平分線上時(shí),折痕EF的長為__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com