如圖,O是正方形ABCD的對角線BD上一點,⊙O與邊AB,BC都相切,點E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是( )

A.3
B.4
C.
D.
【答案】分析:延長FO交AB于點G,根據(jù)折疊對稱可以知道OF⊥CD,所以O(shè)G⊥AB,即點G是切點,OD交EF于點H,點H是切點.結(jié)合圖形可知OG=OH=HD=EH,等于⊙O的半徑,先求出半徑,然后求出正方形的邊長.
解答:解:如圖:延長FO交AB于點G,則點G是切點,
OD交EF于點H,則點H是切點,
∵ABCD是正方形,點O在對角線BD上,
∴DF=DE,OF⊥DC,
∴GF⊥DC,
∴OG⊥AB,
∴OG=OH=HD=HE=AE,且都等于圓的半徑.
在等腰直角三角形DEH中,DE=2,
∴EH=DH==AE.
∴AD=AE+DE=+2.
故選C.
點評:本題考查的是切線的性質(zhì),利用切線的性質(zhì),結(jié)合正方形的特點求出正方形的邊長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F(xiàn)、G是垂足,若正方形ABCD周長為a,則EF+EG等于( 。
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關(guān)系是
 

(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關(guān)系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設(shè)正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結(jié)論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(jù)(1)的結(jié)果判斷a2+b2與2ab的大小嗎?
(3)當(dāng)點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標(biāo)是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運(yùn)動;點Q沿著折線OBCA的方向運(yùn)動,設(shè)運(yùn)動時間為t.
(1)求出經(jīng)過O、A、C三點的拋物線的解析式.
(2)若點Q的運(yùn)動速度是點P的2倍,點Q運(yùn)動到邊BC上,連接PQ交AB于點R,當(dāng)AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運(yùn)動速度為每秒1個單位長度,點Q的運(yùn)動速度為每秒2個單位長度精英家教網(wǎng),兩點運(yùn)動到相遇停止.設(shè)△OPQ的面積為S.請求出S關(guān)于t的函數(shù)關(guān)系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當(dāng)t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網(wǎng)點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習(xí)冊答案