①②③④
分析:①由AD是△ABC的平分線,DE⊥AB,DF⊥AC,根據(jù)余角的性質(zhì),即可證得DA平分∠EDF;
②由在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì),即可得AE=AF,DE=DF;
③由等腰三角形的性質(zhì),即可證得DB=DC;
④由全等三角形的判定方法,即可證得圖中共有3對全等三角形.
解答:①∵在△ABC中,AB=AC,AD是△ABC的平分線,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC,
∴∠ADE=90°-∠BAD,∠ADF=90°-∠CAD,
∴∠ADE=∠ADF,
∴DA平分∠EDF.正確;
②∵AD是△ABC的平分線,DA平分∠EDF,DE⊥AB,DF⊥AC,
∴AE=AF,DE=DF.故正確;
③∵在△ABC中,AB=AC,AD是△ABC的平分線,
∴DB=DC.正確;
④在△ABD和△ACD中,
,
∴△ABD≌△ACD(SAS);
在△ADE和△ADF中,
,
∴△ADE≌△ADF(SAS);
在Rt△BED和Rt△CDF中,
,
∴Rt△BED≌Rt△CDF(HL);
∴圖中共有3對全等三角形,正確.
故答案為:①②③④.
點評:此題考查了角平分線的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.