【題目】如圖,⊙O的半徑是2,弦AB=,點C為是優(yōu)弧AB上一個動點,BDBC交直線AC于點D,則ABD的面積的最大值為___________ .

【答案】3

【解析】

連結OA,如圖,∠AOB=120°,根據(jù)圓周角定理得∠ACB=AOB=60°,由于BCBD,所以∠D=30°,因為AB=,則要使ABD的最大面積,點DAB的距離要最大;當點D在⊙M上的優(yōu)弧AB的中點時,點DAB的距離最大,從而得到ABD的最大面積.

解:連結OA,過點OOE垂直AB,交AB與點E

已知⊙O的半徑是2,弦AB=,BEBC,根據(jù)垂徑定理和勾股定理可得

OE=1,AE=sin∠OAE=

∠OAE=∠OBE=30°

(同弧所對的圓周角是圓心角的一半)

ADB =30°,點D在以AB為弦的⊙M上運動,

BMA=60°,

AB=MB=DM=MA=,

當點D在優(yōu)弧AB的中點時,點DAB的距離最大,從而得到ABD的最大面積.

過點DDNAB于點N

故答案為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角中,延長到點,點邊上的一個動點,過點作直線,分別交、的平分線于,兩點,連接、.在下列結論中.;②;③若,,則的長為6;④當時,四邊形是矩形.其中正確的是( )

A. ①④B. ①②C. ①②③D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;

(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?

(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀理解

利用旋轉變換解決數(shù)學問題是一種常用的方法.如圖,點是等邊三角形內一點,,.的度數(shù).

為利用已知條件,不妨把繞點順時針旋轉,連接,則的長為_______;在中,易證,且的度數(shù)為________,綜上可得的度數(shù)為_______;

2)類比遷移

如圖,點是等腰內的一點,,,,.的度數(shù);

3)拓展應用

如圖,在四邊形中,,,,請直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組為測量一棵古樹和教學樓的高,先在處用高1.5米的測角儀測得古樹頂端的仰角,此時教學樓頂端恰好在視線上,再向前走9米到達處,又測得教學樓頂端的仰角,點、三點在同一水平線上.

1)計算古樹的高;

2)計算教學樓的高.(結果精確到0.1米,參考數(shù)據(jù):,,.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+1與反比例函數(shù)y的圖象相交于點A、B,過點AACx軸,垂足為點C(﹣20),連接ACBC

1)求反比例函數(shù)的解析式;

2)求SABC;

3)利用函數(shù)圖象直接寫出關于x的不等式﹣x+1的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經過A(2,0). 設頂點為點P,與x軸的另一交點為點B.

(1)求b的值,求出點P、點B的坐標;

(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐

標;若不存在,請說明理由;

(3)在x軸下方的拋物線上是否存在點M,使AMP≌△AMB?如果存在試舉例驗證你的猜想;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+bx+cx軸分別交于點AB,與y軸交于點CA點坐標為(-1,0),B點坐標為(30),頂點為D

1)求拋物線解析式;

2)若點M在拋物線的對稱軸上,求ACM周長的最小值;

3)以點P為圓心的圓經過A、B兩點,且與直線CD相切,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是

A. Rt△ABC中,AB=3,BC=4,則AC=5;

B. 極差能反映一組數(shù)據(jù)的變化范圍;

C. 經過點A2,3)的雙曲線一定經過點B-3,-2);

D. 連接菱形各邊中點所得的四邊形是矩形.

查看答案和解析>>

同步練習冊答案