如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm,以BC上一點為圓心的圓經(jīng)過A、D兩點,且∠AOD=90?,則圓心O到弦AD的距離是__________.

cm.

【解析】

試題分析:本題的綜合性質(zhì)較強,根據(jù)全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理,直角梯形的性質(zhì)可知.

試題解析:如圖,作AE⊥CD,垂足為E,OF⊥AD,垂足為F,

則四邊形AECB是矩形,

CE=AB=2cm,DE=CD-CE=4-2=2cm,

∵∠AOD=90°,AO=OD,

所以△AOD是等腰直角三角形,

AO=OD,∠OAD=∠ADO=45°,BO=CD,

∵AB∥CD,

∴∠BAD+∠ADC=180°

∴∠ODC+∠OAB=90°,

∵∠ODC+∠DOC=90°,

∴∠DOC=∠BAO,

∵∠B=∠C=90°

∴△ABO≌△OCD,

∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,

由勾股定理知,AD2=AE2+DE2,

得AD=2cm,

∴AO=OD=2cm,

S△AOD=AO•DO=AD•OF,

∴OF=cm.

考點:1.垂徑定理;2.等腰三角形的性質(zhì)與判定;3.勾股定理;4.矩形的判定;5.直角梯形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市攸縣七年級上學(xué)期期末測試數(shù)學(xué)試卷(解析版) 題型:填空題

已知甲數(shù)為m ,甲數(shù)比乙數(shù)大n ,則乙數(shù)為_______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(1)解方程:x2+2x-3=0

(2)已知反比例函數(shù),當(dāng)x=2時y=3.

①求m的值;

②當(dāng)3≤x≤6時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

一元二次方程x2+px-6=0的一個根為2,則p的值為( )

A.-1 B.-2 C.1 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B

(1)求證:△ADF∽△DEC;

(2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:填空題

已知x=-1是方程2x2+x+m=0的一個根,則m= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:選擇題

一名籃球運動員投籃命中的概率是0.8,下列陳述中,正確的是 ( )

A.他在每10次投籃中必有8次投中

B.他在10次一組的投籃中,平均會有8次投中

C.他投籃10次,不可能投中9次

D.他投籃100次,必投中80次

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級11月階段性檢測數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,A、B是反比例函數(shù)y=上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABDC=14,則k= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚州市寶應(yīng)縣九年級上學(xué)期期末測試數(shù)學(xué)試卷(解析版) 題型:選擇題

10名九年級學(xué)生的體重分別是41,48,50,53,49,50,53,67,51,53(單位:kg).這組數(shù)據(jù)的極差是( )

A.26 B.25 C.24 D.12

查看答案和解析>>

同步練習(xí)冊答案