【題目】如圖,在Rt△ABC中,∠B=90°,分別以AC為圓心,大于AC長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M、N,作直線(xiàn)MN,與AC交于點(diǎn)D,與BC交于點(diǎn)E,連接AE.

1∠ADE= °;

2AE CE(填“><、=”

3)當(dāng)AB=3、AC=5時(shí),△ABE的周長(zhǎng)是 .

【答案】190;(2=;(37.

【解析】

試題(1)由作圖可知MN是線(xiàn)段AC的垂直平分線(xiàn),因此,∠ADE=90°.

2)因?yàn)榫(xiàn)段垂直平分線(xiàn)上的點(diǎn)線(xiàn)段兩端距離相等,所以AE=CE.

3Rt△ABC中,∠B=90°AB=3、AC=5,根據(jù)勾股定理得BC=4.

∴△ABE的周長(zhǎng)="AB+BE+AE=" AB+BE+CE=AB+AC=3+4=7.

試題解析:(190.

2=;

37.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象交于A(1,-k+4),B(k-4,-1)兩點(diǎn).

(1)試確定這兩個(gè)函數(shù)的表達(dá)式;

(2)根據(jù)圖象寫(xiě)出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形中,為邊的中點(diǎn),與對(duì)角線(xiàn)交于點(diǎn),過(guò)于點(diǎn),

,求的長(zhǎng);

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形中,,,點(diǎn)上,,過(guò)點(diǎn),交,點(diǎn)從點(diǎn)出發(fā)以個(gè)單位的速度沿著線(xiàn)段向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)也以個(gè)單位的速度沿著線(xiàn)段向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

填空:當(dāng)時(shí),________;

當(dāng)平分時(shí),直線(xiàn)將菱形的周長(zhǎng)分成兩部分,求這兩部分的比;

為圓心,長(zhǎng)為半徑的是否能與直線(xiàn)相切?如果能,求此時(shí)的值;如果不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)的頂點(diǎn)的兩條直線(xiàn)分三角形邊上的中線(xiàn)所成的比,則這兩條直線(xiàn)分邊所成的比為(

A. 4:5:3 B. 3:4:2 C. 2:3:1 D. 1:1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點(diǎn)C、D,與邊BC相交于點(diǎn)F,OA與CD相交于點(diǎn)E,連接FE并延長(zhǎng)交AC邊于點(diǎn)G.

(1)求證:DF∥AO;

(2)若AC=6,AB=10,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BD、CE分別是△ABCAC邊、AB邊上的高,MBC邊的中點(diǎn),分別連結(jié)MD、MEDE。

(1)當(dāng)∠BAC<90°時(shí),垂足D、E分別落在邊AC、AB上,如圖1,求證:DM=EM;

(2)若∠BAC=120°,試判斷△DEM的形狀,并說(shuō)明理由;

(3)當(dāng)∠BAC= 時(shí),△DEM是等腰直角三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和幾位同學(xué)做手的影子游戲時(shí),發(fā)現(xiàn)對(duì)于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長(zhǎng)度計(jì)算光源到物體的位置.于是,他們做了以下嘗試.

如圖,垂直于地面放置的正方形框架,邊長(zhǎng),在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子,的長(zhǎng)度和為.那么燈泡離地面的高度為________.

不改變圖中燈泡的高度,將兩個(gè)邊長(zhǎng)為的正方形框架按圖擺放,請(qǐng)計(jì)算此時(shí)橫向影子,的長(zhǎng)度和為多少?

個(gè)邊長(zhǎng)為的正方形按圖擺放,測(cè)得橫向影子的長(zhǎng)度和為,求燈泡離地面的距離.(寫(xiě)出解題過(guò)程,結(jié)果用含,的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,直角的頂點(diǎn)上,、分別交、于點(diǎn)、,繞點(diǎn)任意旋轉(zhuǎn).當(dāng)時(shí),的值為________;當(dāng)時(shí),________.(用含的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案