已知拋物線與x軸相交于兩點(diǎn)(α,0),(β,0),α>β,且2α+3β=5,則k=

[  ]

A.-4
B.-5
C.4
D.5
答案:A
解析:

因?yàn)?img border="0" src="http://thumb.zyjl.cn/pic7/pages/30A0/0019/0167/aa558e198046ffe4906cdf8adc1c032e/C/C.htm1.gif" width="392" height="22">

根據(jù)根與系數(shù)的關(guān)系得α+β=3        αβ=k

又2α+3β=5 

解得α=4   β=-1

k=αβ=-4

代入后經(jīng)檢驗(yàn)根的判別式大于0。

選A。

說明:這是兩個(gè)“二次”的綜合習(xí)題,要理解方程的根和拋物線與X軸的交點(diǎn)的橫坐標(biāo)之間的關(guān)系。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線數(shù)學(xué)公式與x軸相交于點(diǎn)A、B,與y軸相交于C.
(1)求點(diǎn)A、B、C的坐標(biāo)及直線BC的解析式;
(2)設(shè)拋物線的頂點(diǎn)為點(diǎn)D,求△ACD的面積S
(3)在直線BC上是否存在一點(diǎn)P,使△ACP是以AC為一腰的等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).

(1)求拋物線的解析式;

(2)點(diǎn)E是線段AC上一動(dòng)點(diǎn),過點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);

(3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)C的坐標(biāo)為(0,-3),拋物線的頂點(diǎn)為D.

1.求拋物線的解析式和頂點(diǎn)D的坐標(biāo)

2.二次函數(shù)的圖像上是否存在點(diǎn)P,使得SPAB=8SABD?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;

3.若拋物線的對稱軸與x軸交于E點(diǎn),點(diǎn)F在直線BC上,點(diǎn)M在的二次函數(shù)圖像上,如果以點(diǎn)F、M、D、E為頂點(diǎn)的四邊形是平行四邊形,請你求出符合條件的點(diǎn)M的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011福建龍巖,24, 13分)如圖,已知拋物線與x軸相交于A、B兩點(diǎn),其對稱軸為直線,且與x軸交于點(diǎn)D,AO=1.

 

(1) 填空:b=_______。c=_______,

    點(diǎn)B的坐標(biāo)為(_______,_______):

(2) 若線段BC的垂直平分線EF交BC于點(diǎn)E,交x軸于點(diǎn)F.求FC的長;

(3) 探究:在拋物線的對稱軸上是否存在點(diǎn)P,使⊙P與x軸、直線BC都相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山西省臨汾市九年級下學(xué)期第一次月考試卷(解析版) 題型:解答題

如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).

(1)求拋物線的解析式;

(2)點(diǎn)E是線段AC上一動(dòng)點(diǎn),過點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);

(3)在直線BC上是否存在一點(diǎn)P,使△ACP為以AC為腰的等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案