如圖1,在△ABC中,∠ACB=90°,AC=BC,CD為AB邊的中線,以D為公共端點(diǎn)的兩條互相垂直的射線分別與AC、BC交于點(diǎn)E、F,分別過點(diǎn)E、F作AB的垂線,垂足為G、H.
(1)求證:①DE=DF;②EG+FH=數(shù)學(xué)公式AC.
(2)當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到圖2、圖3這兩種位置時(shí),探索②中的等量關(guān)系是否成立?若成立,請給予證明;若不成立,線段EG、FH、AC之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想(不需證明).

證明:(1)①∵在△ABC中,∠ACB=90°,AC=BC,CD為AB上的中線,
∴CD=BD,∠DCE=∠B=45°,∠CDB=90°,
∵∠EDF=90°,
∴∠CDE+∠CDF=∠BDF+∠CDF=90°,
∴∠CDE=∠BDF,
在△CDE和△BDF中,
,
∴△CDE≌△BDF,
∴DE=DF.

②∵EG⊥AB,F(xiàn)H⊥AB,
∴∠EGD=∠DHF=90°,∠DEG+∠EDG=90°,
∴△AEG和△BHF均為等腰直角三角形,
又∵∠EDF=90°,
∴∠EDG+∠FDH=90°,
∴∠DEG=∠FDH,
在△DEG和△FDH中,

∴△DEG≌△FDH,
∴EG=DH,F(xiàn)H=DG,
∴EG+FH=DH+DG=AG+BH=AB=AC.

(2)均不成立.
①當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到圖2位置時(shí),EG-FH=AC.
證明:∵EG⊥AB,F(xiàn)H⊥AB,
∴∠EGD=∠DHF=90°,∠DEG+∠EDG=90°,
∴△AEG和△BHF均為等腰直角三角形,
又∵∠EDF=90°,
∴∠EDG+∠FDH=90°,
∴∠DEG=∠FDH,
在△DEG和△FDH中,

∴△DEG≌△FDH,
∴EG=DH,F(xiàn)H=DG,
∴EG-FH=AG-DG=AB=AC.

②當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到圖3位置時(shí),F(xiàn)H-EG=AC.
證明:∵EG⊥AB,F(xiàn)H⊥AB,
∴∠EGD=∠DHF=90°,∠DEG+∠EDG=90°,
∴△AEG和△BHF均為等腰直角三角形,
又∵∠EDF=90°,
∴∠EDG+∠FDH=90°,
∴∠DEG=∠FDH,
在△DEG和△FDH中,

∴△DEG≌△FDH,
∴EG=DH,F(xiàn)H=DG,
∴FH-GE=BH-DH=AB=AC.
分析:(1)①可通過證明△CDE≌△BDF,根據(jù)全等三角形的對應(yīng)邊相等解答;②△AEG和△BHF均為等腰直角三角形,可得GE=HD,GD=HF,易證△DEG≌△FDH,可得EG=DH,F(xiàn)H=DG,則可得EG+FH=DH+DG=AG+BH=AB=AC.
(2)圖2中,可證明△EDG≌△DFH(AAS),則EG=DH,DG=FH,又△AGE是等腰三角形,則EG-FH=AG-DG=AB=AC;圖3同理可得,F(xiàn)H-GE=BH-DH=AB=AC.
點(diǎn)評:本題主要考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì),鍛煉培養(yǎng)了學(xué)生的抽象思維能力、想象探究能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案