如圖,中,于點(diǎn),且 ,則        .
6

試題分析:由,,,可得;;在中,,∴0直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)、動(dòng)手操作:
如圖①:將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為        .
(2)、觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說明理由.

(3)、實(shí)踐與運(yùn)用:
將矩形紙片ABCD按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

是等邊三角形,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D、E,F(xiàn)為BC中點(diǎn),BE與DF,DC分別交于點(diǎn)G,H,∠ABE=∠CBE.

(1)求證:BH=AC;
(2)求證:BG2-GE2=EA2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某人欲從點(diǎn)A橫渡一條河,由于水流的影響,實(shí)際上岸地點(diǎn)C偏離預(yù)到達(dá)點(diǎn)B240m,結(jié)果他在水中實(shí)際游了510 m.求該河的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

△ABC中,∠A與∠B的平分線相交于點(diǎn)P,若點(diǎn)P到AB的距離為10,則它到AC的距離為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

畫∠AOB的角平分線的方法步驟是:

①以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,交OA于M點(diǎn),交OB于N點(diǎn);  
②分別以M、N為圓心,大于的長(zhǎng)為半徑作弧,兩弧在∠AOB的內(nèi)部相交于點(diǎn)C;
③過點(diǎn)C作射線OC.射線OC就是∠AOB的角平分線。這樣作角平分線的根據(jù)是 (    )
A、SSS       B、SAS       C、ASA       D、AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法:①一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等②有兩條邊相等的兩個(gè)直角三角形全等③若兩個(gè)直角三角形面積相等,則它們?nèi)娶軆蛇吅推渲幸贿叺膶?duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等。其中錯(cuò)誤的個(gè)數(shù)是:(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩條公路OA和OB相交于O點(diǎn),在∠AOB的內(nèi)部有工廠C和D,現(xiàn)要修建
一個(gè)貨站P,使貨站P到兩條公路OA、OB的距離相等,且到兩工廠C、D的距離相等,用尺規(guī)作出貨站P的位置.(要
求:不寫作法,保留作圖痕跡,寫出結(jié)論.)

查看答案和解析>>

同步練習(xí)冊(cè)答案