二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)b=        ,c=         ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標系中畫出該函數(shù)的圖像;
x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若將此圖象沿x軸向左平移3個單位,直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式           .
(1),;(2)圖像見解析;(3)y=(x+1)2﹣1.

試題分析:(1)把已知點的坐標代入解析式,然后解關(guān)于b、c的二元一次方程組即可得解;
(2)把函數(shù)解析式轉(zhuǎn)化為頂點式形式,然后即可寫出頂點坐標與對稱軸解析式,采用列表、描點法畫出圖象即可.
(3)左加右減,直接寫出解析式.
試題解析:(1)∵二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0),
,
解得
(2)∴該二次函數(shù)為y=x2﹣4x+3=(x﹣2)2﹣1.
該二次函數(shù)圖象的頂點坐標為(2,﹣1),對稱軸為直線x=2;
列表如下:
x

0
1
2
3
4

y

3
0
﹣1
0
3

描點作圖如下:
;
(3)若將此圖象沿x軸向左平移3個單位,平移后圖象所對應(yīng)的函數(shù)關(guān)系式為y=(x+1)2﹣1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個公共點;
(2)若該函數(shù)的圖象與軸交于點(0,5),求出頂點坐標,并畫出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:關(guān)于的二次函數(shù)y=px2-(3p+2)x+2p+2(p>0)
(1)求證:無論p為何值時,此函數(shù)圖象與x軸總有兩個交點;
(2)設(shè)這兩個交點坐標分別為(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S關(guān)于P的函數(shù)解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

長方體底面周長為50cm,高為10cm.則長方體體積y關(guān)于底面的一條邊長x的函數(shù)解析式是                          .其中x的取值范圍是                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.

(1)求此二次函數(shù)的解析式;
(2)寫出點C的坐標________,頂點D的坐標為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標__________________________________(不必寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;
⑵若該函數(shù)的圖象與x軸只有一個交點,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2-6x+n的部分圖象如圖所示,則它的對稱軸為 x=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某汽車租賃公司擁有20輛汽車.據(jù)統(tǒng)計,當(dāng)每輛車的日租金為400元時,可全部租出;當(dāng)未租出的車將增加1輛,每輛車的日租金每增加50元,;公司平均每日的各項支出共4800元.設(shè)公司每日租出工輛車時,日收益為y元.(日收益=日租金收入一平均每日各項支出)
(1)公司每日租出x輛車時,每輛車的日租金為      元(用含x的代數(shù)式表示);
(2)當(dāng)每日租出多少輛時,租賃公司日收益最大?最大是多少元?
(3)當(dāng)每日租出多少輛時,租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(-3,0),對稱軸為直線x=-1,下列結(jié)論:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b;⑤a-b>m(am+b)(m≠-1)其中正確的結(jié)論有(     )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案