【題目】“雙11”當(dāng)天,重慶順風(fēng)快遞公司出動所有車輛分上午、下午兩批往成都送件,該公司共有甲、乙、丙三種車型,其中甲型車數(shù)量占公司車輛總數(shù)的,乙型車輛是丙型車數(shù)量的2倍,上午安排甲車數(shù)量的,乙車數(shù)量的,丙車數(shù)量的進行運輸,且上午甲、乙、丙三種車型每輛載貨量分別為15噸,10噸,20噸,則上午剛好運完當(dāng)天全部快件重量的;下午安排剩下的所有車輛運輸完當(dāng)天剩下的所有快件,且下午甲、乙、丙三種車型每輛載貨量分別不得超過20噸,12噸,16噸,下午乙型車實際載貨量為下午甲型車每輛實際載貨量的.已知同種貨車每輛的實際載貨量相等,甲、乙、丙三種車型每輛車下午的運輸成本分別為50元/噸,90元/噸,60元/噸.則下午運輸時,一輛甲種車、一輛乙種車、一輛丙種車總的運輸成本最少為_____元.
【答案】2700.
【解析】
設(shè)重慶順風(fēng)快遞公司總共有x輛車,用表示各型車的數(shù)量,上午運輸快遞重量,下午快遞重量,設(shè)下午甲型車每輛實際載貨量為y噸,丙型車每輛實際載貨量為z噸,則乙型車每輛實際載貨量y噸,根據(jù)題意列出y的不等式組,求得y的取值范圍,再用y的代數(shù)式表示:下午運輸時,一輛甲種車、一輛乙種車、一輛丙種車總的運輸成本,最后根據(jù)一次函數(shù)的性質(zhì)求最小值.
解:設(shè)重慶順風(fēng)快遞公司總共有x輛車,則甲型車有x輛,乙型車有x=x輛,丙型車有x=x輛,根據(jù)題意得,
上午運貨總量為:15×x+10××x+20×=x(噸),
全天運貨總量為:=14x(噸),
下午運貨總量為:14x(1﹣)=x(噸),
設(shè)下午甲型車每輛實際載貨量為y噸,丙型車每輛實際載貨量為z噸,則乙型車每輛實際載貨量y噸,根據(jù)題意得,
xy+xy+xz=x,
化簡得,4y+z=84,
∴z=84﹣4y,
∵下午甲、乙、丙三種車型每輛載貨量分別不得超過20噸,12噸,16噸
∴,
∴17≤y≤18,
∴下午運輸時,一輛甲種車、一輛乙種車、一輛丙種車總的運輸成本為:
w=50y+90×y+60(84﹣4y)=﹣130y+5040,
∵﹣130<0,
∴w隨y的增大而減小,
∴當(dāng)y=18時,w有最小值為:﹣130×18+5040=2700(元),
故答案為:2700.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天府新區(qū)某校數(shù)學(xué)活動小組在一次活動中,對一個數(shù)學(xué)問題作如下探究:
(1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點P是邊BC上任意一點,連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP CQ;
(2)變式探究:如圖2,在等腰△ABC中,ABBC,點P是邊BC上任意一點,以AP為腰作等腰△APQ,使AP PQ,APQ ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖3,在正方形ADBC中,點P是邊BC上一點,以AP為邊作正方形 APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長為6,,求正方形ADBC的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當(dāng)AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過點C作CN⊥BD,垂足為N,直線l垂直BC,分別交BD、BC于點P、Q.直線l從AB出發(fā),以每秒1cm的速度沿BC方向勻速運動到CD為止;點M沿線段DA以每秒1cm的速度由點D向點A勻速運動,到點A為止,直線1與點M同時出發(fā),設(shè)運動時間為t秒(t>0).
(1)線段CN= ;
(2)連接PM和QN,當(dāng)四邊形MPQN為平行四邊形時,求t的值;
(3)在整個運動過程中,當(dāng)t為何值時△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(0,1),B(﹣3,0),連接AB,將△ABO沿AB翻折,使點O與點C重合,且點C恰好在函數(shù)y=上,則k的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蛋黃酥是現(xiàn)下糕點界的網(wǎng)紅,每一顆蛋黃酥金黃誘人的酥皮下都包著一顆細(xì)膩綿沙的咸蛋黃,其口口酥心,層層松軟的特點讓人難忘.某商家推出兩款八粒裝的蛋黃酥,其中麻薯豆沙蛋黃酥50元每盒,蓮蓉千層蛋黃酥48元每盒,兩款蛋黃酥非常暢銷,平均每周銷售額為344000元.
(1)受生產(chǎn)能力限制,該商家平時每周生產(chǎn)7000盒八粒裝蛋黃酥,為了保證周銷售額不變,則每周平均需生產(chǎn)麻薯豆沙蛋黃酥多少盒?
(2)在(1)的條件下,為了迎接雙十一大促,該商家提前擴大生產(chǎn)能力,并在雙十一當(dāng)天,開展蛋黃酥促銷活動,麻薯豆沙蛋黃酥售價降低了a元,其銷量在當(dāng)天比平時周銷量增加了2000盒,最后當(dāng)天兩款蛋黃酥的總銷售額比平時周銷售額還多96000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個小正方形的邊長均為 1,線段 AB 的端點 A、B 均在小正方形的頂點上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點 C 在小正方形頂點上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點 D在小正方形的頂點上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的平分線于點C,交AD于點F,過點C作CD⊥AD于D,交AB的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若=,求cos∠DAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三瓶不同濃度的酒精,A瓶內(nèi)有酒精2kg,濃度x%,B瓶有酒精3kg,濃度y%,C瓶有酒精5kg,濃度z%,從A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后測得濃度33.5%,將混合后的溶液倒回瓶中,使它們恢復(fù)原來的質(zhì)量,再從A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后測得濃度為31.5%,測量發(fā)現(xiàn),,,且x、y、z均為整數(shù),則把起初A、B兩瓶酒精全部混合后的濃度為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com