如圖,拋物線經(jīng)過A、B、C三點,頂點為D,且與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)求四邊形ABCD的面積;
(3)判斷△AOB與△BDE是否相似?如果相似,請予證明;如果不相似,請說明理由.

【答案】分析:(1)運用待定系數(shù)法,直接代入y=ax2+bx+c可以求出二次函數(shù)解析式;
(2)可以運用配方法求出二次函數(shù)的頂點坐標(biāo),再將四邊形分割成2個三角形,可以得出面積;
(3)利用勾股定理得出BD與DE的長,根據(jù)勾股定理的逆定理,得出∠BDE=90°,再利用兩邊對應(yīng)成比例,且夾角相等,得出三角形相似.
解答:解:(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),將點A(-1,0)、B(0,3)、C(2,3)三點坐標(biāo)代入,
,
,
∴拋物線的解析式為y=-x2+2x+3.

(2)如圖,設(shè)對稱軸交x軸于點F,連接BF,
y=-x2+2x+3=-(x-1)2+4,
∴頂點D的坐標(biāo)為(1,4),F(xiàn)的坐標(biāo)為(1,0).
∴S四邊形ABCD=S△ABC+S△BDC=BC•HF+BC•DH=×2×1+×2×3=4;

(3)△AOB與△BDE相似.
證明:∵BD==,BE==3,
DE===2,
∴BD2+BE2=2+18=20=DE2
∴∠DBE=90°,
在Rt△AOB中,OA=1,OB=3,
,
∴△AOB∽△DBE.
點評:此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及分割四邊形求面積和相似三角形的判定等知識,考查內(nèi)容比較全面,而且考查知識都是中考中熱點問題,同學(xué)們應(yīng)熟練地應(yīng)用這些知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點,
(1)求拋物線的解析式;
(2)求該拋物線的頂點坐標(biāo)以及最值;
(3)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州一模)如圖,拋物線經(jīng)過A,C,D三點,且三點坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標(biāo)為
(3,0)
(3,0)
;
(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標(biāo);如不存在,說明理由;
(3)連結(jié)FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標(biāo)x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過A(-2,0)、B(8,0)兩點,與y軸正半軸交與點C,且AB=BC,點P為第一象限內(nèi)拋物線上一動點(不與B、C重合),設(shè)點P的坐標(biāo)為(m,n).
(1)求拋物線的解析式;
(2)點D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設(shè)拋物線的對稱軸為l,若以點P為圓心的⊙P與直線BC相切,請寫出⊙P的半徑R關(guān)于m函數(shù)關(guān)系式,并判斷⊙P與直線l的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案