解下列方程:
(1)x2-2x-3=0
(2)(x-1)(x+2)=4
(3)2x2-4x-5=0
(4)(x-1)2-2x(x-1)=0.
【答案】
分析:(1)利用因式分解法解一元二次方程,將-3分解為-3×1,即可得出;
(2)去括號、移項、合并同類項,然后利用十字相乘即可得出答案;
(3)利用配方法首先二次項系數(shù)畫一,再進行移項配方即可;
(4)直接提取公因式(x-1),因式分解即可得出答案.
解答:解:(1)x
2-2x-3=0,
∴(x-3)(x+1)=0,
∴x-3=0或x+1=0,
∴x
1=3,x
2=-1.
(2)(x-1)(x+2)=4,
去括號得:
x
2+x-2=4,
∴x
2+x-6=0,
∴(x-2)(x+3)=0,
∴x-2=0或x+3=0,
∴x
1=2,x
2=-3,
(3)2x
2-4x-5=0,
配方得:(x-1)
2=
+1,
∴(x-1)
2=
,
∴x-1=±
,
∴x
1=1+
=
,x
2=1-
=
,
(4)(x-1)
2-2x(x-1)=0.
提取公因式(x-1)得:
(x-1)[(x-1)-2x]=0,
∴(x-1)(-x-1)=0,
∴x-1=0或-x-1=0,
∴x
1=1,x
2=-1.
點評:此題主要考查了因式分解法和配方法解一元二次方程,只有當方程的一邊能夠分解成兩個一次因式,而另一邊是0的時候,才能應用因式分解法解一元二次方程,難度適中.